Dark sector at Belle II

XIII Meeting on B Physics – Marseille, 1-3 October 2018

Laura Zani – INFN and University of Pisa on behalf of the Belle II Collaboration

Istituto Nazionale di Fisica Nucleare

Outline

- The Belle II experiment at SuperKEKB collider
- Phase 2 Running
- Dark Matter at Belle II
 - Dark Photons
 - Axion Like Particles
 - Muonic Forces
- Summary & Outlook

B-Factories: the high intensity frontier

B-factories: dedicated experiments at $e^+e^-asymmetric-energy colliders$ for the production of quantum coherent BB pairs \rightarrow **CPV studies**.

 $e^+e^- \rightarrow \Upsilon(4S) \ [10.58 \text{ GeV}] \rightarrow B\overline{B}$

SuperKEKB

 Second generation B-Factory, it will provide the world highest luminosity, applying the large crossing angle nano-beams scheme.
 (P.Raimondi for SuperB, M. Bona et al., arXiv:0709.0451)

SuperKEKB

The Belle II Detector

• The Belle II detector has better resolution, PID and capability to cope with higher background

Belle II Data Taking: Phase 2

Phase 2 (April-July 2018): Commissioning of the machine, detector and software

- 1/8th VXD
- Lower backgrounds
- Flexible hardware triggers
- Pass-through software trigger

Belle II Data Taking: Phase 2

Belle II Data Taking: Phase 3

Belle II Performances

Dark Sector: Introduction

 Many astrophysical observations provide evidence for the existence of a kind of matter that does not interact with the SM (*mostly* gravitational interaction) → *dark matter*

A Milky-Way-size dark-matter halo and its subhalos (circled), produced in simulations [Caterpillar Project, Griffen et al. 2016], AAS.

L.Zani, Dark Sector at Belle II - XIII Meeting on B Physics, Marseille 2018

- Possible sub-GeV scale scenario: *light dark sector* weakly coupled to SM through a light *mediator X*
 - Vector portal \rightarrow Dark Photon A'
 - [–] Scalar portal \rightarrow Dark Higgs/Scalars
 - Pseudo-scalar portal \rightarrow Axion Like Particles (ALPs)
 - Neutrino portal \rightarrow Sterile Neutrinos

Dark Sector: Introduction

 Many astrophysical observations provide evidence for the existence of a kind of matter that does not interact with the SM (*mostly* gravitational interaction) → *dark matter*

Vector portal: the Dark Photon

- A possible extension of the SM include a new massive $(m_{A'})$ gauge boson A' of spin = 1 coupling to the SM through the kinetic mixing with strength $\varepsilon \rightarrow$ the *dark photon*
- At e⁺e⁻ colliders we investigate the ISR production $e^+e^- \rightarrow \gamma A'$.

Dark Photon to Invisible

- Signal Signature:
 - select events with a single, monochromatic, high energetic *ISR photon*
 - Look for a bump in the reconstructed photon energy $E_{\gamma} = (s m_{A'}^2)/2\sqrt{s}$

 \rightarrow only one photon in the detector requires a dedicated *single photon trigger*.

(@Belle was not available, ~10% BaBar data)

Belle II Phase 3 (Designed)

Trigger logic	L1 rate at full luminosity	
E > 1 GeV	4 kHz (barrel)	
+ 2 nd cluster E < 300 MeV	7 kHz (endcaps)	
E > 2 GeV	5 kHz (barrel)	
+ Bhabha & γγ vetoes		

Dark Photon to Invisible: Backgrounds

- Background dominated by QED processes:
 - $-e^+e^- \rightarrow \gamma \gamma (\gamma)$ where one photon is not detected (ECL gaps) and the second out of acceptance
 - radiative Bhabha $e^+e^- \rightarrow e^+e^- \gamma(\gamma)$ with the electron-positron pair out of acceptance.

Dark Photon to Invisible: Sensitivity

* Relic density lines assume a standard cosmological history and that there is only a single component of dark matter, which only interacts via Dark Photon exchange.

Axion Like Particles (ALPs)

- Axion Like Particles are pseudo-scalars coupling to bosons
- Unlike for QCD Axions, there is no relation between the coupling and the mass
- Explored photon coupling g_{aγγ} in ALPstrahlung processes

(*photon fusion:* sensitivity under study)

 e^+

 e^{-}

- Displaced vertex
- Long-lived particle

L.Zani, Dark Sector at Belle II – XIII Meeting on B Physics, Marseille 2018

 e^{i}

ALPs: Experimental Signature

- Signal signatures: 3 γ final state, several topologies \rightarrow 4 categories
- ALPS may also decay to invisible (DM) ightarrow single photon topology

ALPs: Sensitivity

Z' to Invisible: L_{μ} - L_{τ} model

• New gauge boson Z' coupling only to the 2^{nd} and 3^{rd} generation of leptons $(L_{\mu}-L_{\tau})$

Detecting the L_{μ} - L_{τ} gauge boson at Belle II, arXiv:1702.01497

- Invisible signature investigated for the first time in the process $e^+e^-\!\!\to\mu^+\mu^-Z'+\textit{missing energy}$
- May explain the $(g\mathchar`-2)_{\mu}$ anomaly
- BR(Z'→ inv) may be enhanced by the presence of kinematically accessible DM (e.g. sterile neutrinos)

Shuve et al. (2014), arXiv:1403.2727

$$\begin{array}{l} \label{eq:matrix} \text{Branching ratios:}\\ M_z, < 2 M_\mu \rightarrow \Gamma(Z' \rightarrow \text{inv.}) = 1\\ 2 M_\mu < M_z, < 2 M_\tau \rightarrow \Gamma(Z' \rightarrow \text{inv.}) \sim 1/2\\ M_z, > 2 M_\tau \rightarrow \Gamma(Z' \rightarrow \text{inv.}) \sim 1/3\\ \end{array}$$
* If LDMA is accessible, BR(Z' \rightarrow DM)~1

Z' to Invisible: Experimental Signature

- Reconstruct the recoil against a µ+µ- pair and looks for a peak in the recoil mass spectrum.
 (Additionally require nothing in the rest of event)
- Simulated and reconstructed several Z' masses between 0.1 -10 GeV
- Backgrounds mainly from radiative QED processes:

```
egin{aligned} e^+e^-&
ightarrow \mu^+\mu^-(\gamma)\ e^+e^-&	au^+	au^-(\gamma)\ e^+e^-&
ightarrow \mu^+\mu^-e^+e^- \end{aligned}
```


- The above upper limits (90% CL) take into account the calculate Z' cross section, signal efficiencies and background rejection (the selection is NOT optimized yet)
- Visible decays of Z' $\rightarrow \mu^+\mu^-$ will be competitive in Phase 3 (currently lead by BaBar measurement)

Z' to Invisible: Experimental Signature

- Reconstruct the recoil against a μ+μ- pair and looks for a peak in the recoil mass spectrum.
 (Additionally require nothing in the rest of event)
- Simulated and reconstructed several Z' masses between 0.1 -10 GeV
- Backgrounds mainly from radiative QED processes:

```
egin{aligned} e^+e^-&
ightarrow \mu^+\mu^-(\gamma)\ e^+e^-&	o 	au^+	au^-(\gamma)\ e^+e^-&
ightarrow \mu^+\mu^-e^+e^- \end{aligned}
```


 Furthermore, it will be possible to search for a Lepton Flavor violating Z':

LFV Z' (eµ coupling) $e^+e^- \rightarrow e^+\mu^- Z'$; $Z' \rightarrow invisible$ $e^+e^- \rightarrow e^+\mu^- Z'$; $Z' \rightarrow e^+\mu^-$ (no SM background)

Summary

Summary

- Belle II Phase 2 finished less than 3 months ago
- Successful commissioning of SuperKEKB and Belle II detector, achieved peak luminosity $L_{MAX} = 5.5 \cdot 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$ and collected $L_{INT} = 0.472 \text{ fb}^{-1}$
- Extensive studies on hardware L1 trigger have been performed (both on tracks and neutrals)

Furthermore

• Early physics rediscovery: b-physics, resonances, charm...

 \rightarrow Dedicated Dark Sector triggers and improved performances may bring to *new world leading sensitivity* for dark sector searches even with a small data set

- (20 fb⁻¹ will hopefully come soon next year!)
- Invisible Dark Photon
- ALPs
- Z' to invisible (+ LFV Z')

For further details see *The Belle II Physics Book*, arXiv:1808.10567

- Magnetic monopole
- Invisible $\Upsilon(1S)$ decays
- Muonic dark forces
- Dark Higgs/Higgstrahlung
- Dark scalars
- Inelastic Dark Matter
- Long-lived particles

Summary

SuperKEKB Numbers

2017/September/1	LER	HER	unit	
E	4.000	7.007	GeV	
I	3.6	2.6	А	
Number of bunches	2,500			
Bunch Current	1.44	1.04	mA	
Circumference	3,016.315		m	
ε _x /ε _y	3.2(1.9)/8.64(2.8)	4.6(4.4)/12.9(1.5)	nm/pm	():zero current
Coupling	0.27	0.28		includes beam-beam
β_x^*/β_y^*	32/0.27	25/0.30	mm	
Crossing angle	83		mrad	
α _p	3.20x10 ⁻⁴	4.55x10 ⁻⁴		
σδ	7.92(7.53)x10 ⁻⁴	6.37(6.30)x10 ⁻⁴		():zero current
Vc	9.4	15.0	M∨	
σz	6(4.7)	5(4.9)	mm	():zero current
Vs	-0.0245	-0.0280		
v_x/v_y	44.53/46.57	45.53/43.57		
Uo	1.76	2.43	MeV	
$\tau_{x,y}/\tau_s$	45.7/22.8	58.0/29.0	msec	
ξ×/ξγ	0.0028/0.0881	0.0012/0.0807		
Luminosity	8x10 ³⁵		cm ⁻² s ⁻¹	

Nano-beam Scheme

Some Belle II Performances

Belle II Electromagnetic Calorimeter (ECL)

Dark Photon to leptons: Sensitivity

From Belle II Physics Book, arXiv:1808.10567

Fig. 211: Existing exclusion regions (90% CL) on the dark photon mixing parameter ε and mass $M_{A'}$ (solid regions) for $A' \to \ell \ell$, with projected limits for Belle II and other future experiments (lines)

LFV Z': invisible and visible channel

- What if symmetries of SM are not kept in the Dark Sector?
- What if DM violates Lepton Flavour?
- One can imagine, for example, $e\mu$ coupling

 $e^+e^- \rightarrow e^+\mu^- Z'$; $Z' \rightarrow invisible$ Dominant background: $e^+e^- \rightarrow \tau^+\tau^-(\gamma)$, $\tau^\pm \rightarrow \mu^\pm, e^\pm \nu\nu$

$$e^+e^- \rightarrow e^+\mu^- Z'$$
; $Z' \rightarrow e^+\mu^- + c.c.$
no SM background

Magnetic Monopoles

Minimal magnetic charge from Dirac quantization: $g_{p} = 68.5e$

Lower magnetic charge is not ruled out (and not covered at ~GeV scale)

Interesting predictions* for $\mathbf{g} \sim \mathbf{e}$ and $\mathbf{m} = \mathbf{4.5} \ \mathbf{GeV}...$

 \rightarrow few hits in the CDC

Other Dark Sector and Exotic Searches

Visible Dark Photon decays

*Off-shell Dark Photon decays

Long-lived neutral particle decays

Dark Scalar:

$$e^+ e^-
ightarrow au^+ au^- S$$
 ; $S
ightarrow I^+ I^-$

*Magnetic Monopoles

* Phase 2 benchmark

Further details are provided in *The Belle II Physics Book*, arXiv:1808.10567 [hep-ex]

L.Zani, Dark Sector at Belle II – XIII Meeting on B Physics, Marseille 2018

Invisible $\Upsilon(1S)$ decays via: $\Upsilon(3S) \rightarrow \Upsilon(1S) \ \pi^+ \pi^-$

Muonic Dark Force: ${\rm e^+\,e^-} \to \, \mu^+\,\mu^-\, {\rm Z'}\,\,;\, {\rm Z'}\,\to \, \mu^+\,\mu^-$

LFV: * $e^+ e^- \rightarrow e^+ \mu^- Z'$; Z' \rightarrow invisible * $e^+ e^- \rightarrow e^+ \mu^- Z'$; Z' $\rightarrow e^+ \mu^-$