

#### Talk Outline

Interplay bet. Belle II and LHCb Interplay bet. B (flavor) and high  $P_T$  programs

- Introduction
- Advantage of Belle II and interplay with LHC(b)
  - CKM
  - B→D(\*) T V, T V, I V
  - $B \rightarrow X_S II$ ,  $B \rightarrow K^{(*)} \tau \tau$
  - Lepton flavor violation
- Status and prospect of SuperKEKB/Belle II
- Summary

"The Belle II Physics Book" 1808.10567

Apology: I cannot cover all topics.

### Perfect SM

 CP violation explained by the mechanism proposed by Kobayashi and Maskawa.

Higgs has been discovered and its couplings to fermions

are being measured.



Problems in the SM: naturalness, dark matter, matter-antimatter asymmetry in the Universe, ...



# Role of Flavor Physics

- Search for New Physics through processes sensitive to presence of virtual heavy particles.
- Complementary to direct search at LHC high P<sub>T</sub> programs.
- Becoming more and more important, since no NP signal at LHC at this moment.





#### **ATLAS**











## Hints of New Physics!

#### Observed deviation from SM



Is Lepton Non-universality the clue to NP?

# SuperKEKB/Belle II

New intensity frontier facility at KEK

• Target luminosity;  $L_{peak} = 8 \times 10^{35} \text{cm}^{-2} \text{s}^{-1}$  $\Rightarrow \sim 10^{10} \text{ BB}, \text{ T}^{+}\text{T}^{-} \text{ and charms per year } !$ 

 $L_{int} > 50 \text{ ab}^{-1}$ 

- Rich physics program
  - Search for New Physics through processes sensitive to virtual heavy particles.
  - New QCD phenomena (XYZ, new states including heavy flavors) + more





The first particle collider after the LHC!

# SuperKEKB Accelerator

• Low emittance ("nano-beam") scheme employed (originally proposed by P. Raimondi)

#### Machine parameters

|   |                                      | SuperKEKB<br>LER/HER | KEKB<br>LER/HER      |          |
|---|--------------------------------------|----------------------|----------------------|----------|
|   | E(GeV)                               | 4.0/7.0              | 3.5/8.0              |          |
|   | ٤ <sub>x</sub> (nm)                  | 3.2/4.6              | 18/24<br>X           | 20       |
| ( | βy at IP(mm)                         | 0.27/0.30            | 5.9/5.9              |          |
|   | βx at<br>IP(mm)                      | 32/25                | 120/120              |          |
|   | Half crossing angle(mrad)            | 41.5                 | 11                   | <b>2</b> |
| ( | I(A)                                 | 3.6/2.6              | 1.6/1.2              |          |
|   | Lifetime                             | ~10min               | 130min/200min        |          |
|   | L(cm <sup>-2</sup> s <sup>-1</sup> ) | 80×10 <sup>34</sup>  | 2.1×10 <sup>34</sup> |          |



#### Belle II Detector

- Deal with higher background (10-20×), radiation damage, higher occupancy, higher event rates (L1 trigg. 0.5→30 kHz)
- Improved performance and hermeticity





- Belle II now has grown to ~800 researchers from 25 countries
  - ~270 graduate students
- Large international collaboration hosted by KEK, Japan

# Advantage of e<sup>+</sup>e<sup>-</sup> Flavor Factory

- Clean environment
  - Efficient detection of neutrals  $(\gamma, \pi^0, \eta, ...)$
- Quantum correlated B<sup>0</sup>B<sup>0</sup> pairs
  - High effective flavor tagging efficiency :
- Large sample of T leptons
  - Search for LFV T decays at O(10-9)
- Full reconstruction tagging possible
  - A powerful tool to measure;
    - b→u semileptonic decays (CKM)
    - decays with large missing energy
- Systematics different from LHCb
  - Two experiments are required to establish NP





$$B \rightarrow \pi I V$$
  
 $B \rightarrow \tau V, D \tau V$   
 $B \rightarrow K V V$ 

τ/ν

### Advantage of e<sup>+</sup>e<sup>-</sup> Flavor Factory

- · CI
- . (
- •
- La
  - •
- Fu



pp collision large production rate



Powerful!





e<sup>+</sup>e<sup>-</sup> collision low background

Clean!



TOYOTA FCV NOW ON MARKET!

# The role of T lepton



#### T lepton

- The heaviest charged lepton
- High sensitivity to New Physics





#### Unique probe to search for New Physics

#### $e^+e^- \rightarrow \tau^+\tau^- \rightarrow decays$

- LFV (Lepton Flavor Violation)
- EDM, CPV, g-2
- LNV (Lepton Number Violation)
- BNV (Baryon Number Violation)
- Precision test of SM

#### decays w/ T in the final state

- charm
- bottom
- top
- Higgs

Belle II has advantage for these measurements!

# Missing energy decays

- e+e- annihilation data is ideal to decays with large missing energy.
- B tagging analysis enables also precise inclusive measurements;
   b→u | v, b→s γ, b→s | I
   efficiency



#### Belle II Full Event Reconstruction

Belle II has developed a new "Full Event Interpretation" tool

based on fast BDT.

| Tag algorithm date  | MVA                         | Efficiency | Purity |
|---------------------|-----------------------------|------------|--------|
| Belle v1 (2004)     | Cut-based (Vcb)             | -          | -      |
| Belle v3 (2007)     | Cut-based                   | 0.1        | 0.25   |
| Belle NB (2011)     | Neurobayes                  | 0.2        | 0.25   |
| Belle II FEI (2017) | Fast<br>BoostedDecisionTree | 0.5        | 0.25   |



+ NEW FEI method based on semileptonic tag
 Fast BDT tag in B → D(\*) l v + B → D(\*)π l v.

Number of decay modes used in tagging (Belle → Belle II)

• B+:  $17 \rightarrow 29$ , B0:  $14 \rightarrow 26$ 

•  $D^{+}/D^{*+}/D_{s}^{+}$ :  $18 \rightarrow 26$ ,  $D^{0}/D^{*0}$ :  $12 \rightarrow 17$ 

| D+                                                           | $B^0$ modes                                              | D+ D*+ D+ ms 1                                                     | D0 D*0 mode-                                      |
|--------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------|
| $B^+$ modes                                                  |                                                          | $D^+, D^{*+}, D^+_s \text{ modes}$                                 | $D^0, D^{*0}$ modes                               |
| $B^+ \to \overline{D}{}^0\pi^+$                              | $B^0 \rightarrow D^- \pi^+$                              | $D^+ \to K^- \pi^+ \pi^+$                                          | $D^0 	o K^-\pi^+$                                 |
| $B^+ 	o \overline{D}{}^0 \pi^+ \pi^0$                        | $B^0 \to D^- \pi^+ \pi^0$                                | $D^+ \to K^- \pi^+ \pi^+ \pi^0$                                    | $D^0 \to K^- \pi^+ \pi^0$                         |
| $B^+ 	o \overline{D}{}^0 \pi^+ \pi^0 \pi^0$                  | $B^0 \to D^- \pi^+ \pi^+ \pi^-$                          | $D^+ \rightarrow K^- K^+ \pi^+$                                    | $D^0 \to K^- \pi^+ \pi^+ \pi^-$                   |
| $B^+ \rightarrow \overline{D}{}^0\pi^+\pi^+\pi^-$            | $B^0 \rightarrow D_s^+ D^-$                              | $D^+ \to K^- K^+ \pi^+ \pi^0$                                      | $D^0 	o \pi^-\pi^+$                               |
| $B^+ \to D_s^+ \overline{D}{}^0$                             | $B^0 \to D^{*-}\pi^+$                                    | $D^+ \rightarrow K_s^0 \pi^+$                                      | $D^0  ightarrow \pi^- \pi^+ \pi^0$                |
| $B^+ 	o \overline{D}^{*0} \pi^+$                             | $B^0 \to D^{*-}\pi^+\pi^0$                               | $D^+ \rightarrow K_s^0 \pi^+ \pi^0$                                | $D^0  ightarrow K_{\scriptscriptstyle S}^0 \pi^0$ |
| $B^+ 	o \overline{D}^{*0} \pi^+ \pi^0$                       | $B^0 \to D^{*-}\pi^+\pi^+\pi^-$                          | $D^+ \to K_s^0 \pi^+ \pi^+ \pi^-$                                  | $D^0  ightarrow K_S^0 \pi^+ \pi^-$                |
| $B^+ 	o \overline{D}^{*0} \pi^+ \pi^+ \pi^-$                 | $B^0 \to D^{*-}\pi^+\pi^+\pi^-\pi^0$                     |                                                                    |                                                   |
| $B^+ \to \overline{D}^{*0} \pi^+ \pi^+ \pi^- \pi^0$          | $B^0 \rightarrow D_s^{*+}D^-$                            | $D^{*+} \to D^0 \pi^+$                                             | $D^{0} \to K_{S}^{0} \pi^{+} \pi^{-} \pi^{0}$     |
| $B^+ \to D_s^{*+} \overline{D}{}^0$                          | $B^0 \to D_s^+ D^{*-}$                                   | $D^{*+} \to D^+ \pi^0$                                             | $D^0 \to K^-K^+$                                  |
| $B^+ \to D_s^+ \overline{D}^{*0}$                            | $B^0 \to D_s^{*+} D^{*-}$                                | $D_s^+ \to K^+ K_{\scriptscriptstyle S}^0$                         | $D^0 	o K^-K^+K^0_{\scriptscriptstyle S}$         |
| $B^+ 	o \overline{D}{}^0 K^+$                                | $B^0 \rightarrow J/\psi K_{\scriptscriptstyle S}^0$      | $D_s^+ \to K^+ \pi^+ \pi^-$                                        | $D^{*0} 	o D^0 \pi^0$                             |
| $B^+ \to D^- \pi^+ \pi^+$                                    | $B^0 \rightarrow J/\psi K^+\pi^+$                        | $D_s^+ \to K^+K^-\pi^+$                                            | $D^{*0} 	o D^0 \gamma$                            |
| $B^+ \to J/\psi K^+$                                         | $B^0 \to J/\psi  K_{\scriptscriptstyle S}^0 \pi^+ \pi^-$ | $D_s^+ \to K^+ K^- \pi^+ \pi^0$                                    | ·                                                 |
| $B^+ \rightarrow J/\psi K^+ \pi^+ \pi^-$                     |                                                          | $D_s^+ \to K^+ K_s^0 \pi^+ \pi^-$                                  |                                                   |
| $B^+ \rightarrow J/\psi K^+ \pi^0$                           |                                                          | $D_s^+ \to K^- K_s^0 \pi^+ \pi^+$                                  |                                                   |
| $B^+ \to J/\psi K_s^0 \pi^+$                                 |                                                          | $D_s^+ \to K^+ K^- \pi^+ \pi^+ \pi^-$                              |                                                   |
| $B^{+} \to D^{-}\pi^{+}\pi^{+}\pi^{0}$                       | $B^0 \to D^- \pi^+ \pi^0 \pi^0$                          | 1 0                                                                |                                                   |
| $B^{+} \to \overline{D}{}^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{0}$   | $B^0 \to D^- \pi^+ \pi^+ \pi^- \pi^0$                    | $D_s^+ \to \pi^+ \pi^+ \pi^-$                                      |                                                   |
| $B^+ 	o \overline{D}{}^0 D^+$                                | $B^0 	o \overline{D}{}^0\pi^+\pi^-$                      | $D_s^{*+} \to D_s^+ \pi^0$                                         |                                                   |
| $B^+ 	o \overline{D}{}^0 D^+ K^0_{\scriptscriptstyle S}$     | $B^0 \rightarrow D^- D^0 K^+$                            | $D^+ 	o \pi^+ \pi^0$                                               | $D^0 \to K^- \pi^+ \pi^0 \pi^0$                   |
| $B^+ 	o \overline{D}^{*0} D^+ K_{\scriptscriptstyle S}^0$    | $B^0 \rightarrow D^- D^{*0} K^+$                         | $D^+ \rightarrow \pi^+ \pi^+ \pi^-$                                | $D^0 \to K^- \pi^+ \pi^+ \pi^- \pi^0$             |
| $B^+ 	o \overline{D}{}^0 D^{*+} K^0_{\scriptscriptstyle S}$  | $B^0 \rightarrow D^{*-}D^0K^+$                           | $D^{+} \to \pi^{+}\pi^{+}\pi^{-}\pi^{0}$                           | $D^0 \rightarrow \pi^-\pi^+\pi^+\pi^-$            |
| $B^+ 	o \overline{D}^{*0} D^{*+} K_{\scriptscriptstyle S}^0$ | $B^0 \to D^{*-}D^{*0}K^+$                                | $D^+ 	o K^{+}K^0_{\scriptscriptstyle S}K^0_{\scriptscriptstyle S}$ | $D^0 \to \pi^- \pi^+ \pi^0 \pi^0$                 |
| $B^+ 	o \overline{D}{}^0 D^0 K^+$                            | $B^0 \rightarrow D^- D^+ K_s^0$                          | $D^{*+} \rightarrow D^+ \gamma$                                    | $D^0 \rightarrow K^-K^+\pi^0$                     |
| $B^+ 	o \overline{D}^{*0} D^0 K^+$                           | $B^0 \rightarrow D^{*-}D^+K^0_s$                         | $D_s^+ \rightarrow K_s^0 \pi^+$                                    |                                                   |
| $B^+ 	o \overline{D}{}^0 D^{*0} K^+$                         | $B^0 \rightarrow D^- D^{*+} K_s^0$                       |                                                                    |                                                   |
| $B^+ 	o \overline{D}^{*0} D^{*0} K^+$                        | $B^0 	o D^{*-}D^{*+}K^0_{\scriptscriptstyle S}$          | $D_s^+ \to K_s^0 \pi^+ \pi^0$                                      |                                                   |
| $B^+ 	o \overline{D}^{*0} \pi^+ \pi^0 \pi^0$                 | $B^0 \to D^{*-} \pi^+ \pi^0 \pi^0$                       | $D_s^{*+} \rightarrow D_s^+ \pi^0$                                 |                                                   |

Below line: not used in Belle NB tag.

# Prospect for CKM

- Details have been discussed by other speakers.
  - See talks by J. Charles, A. Passeri, M.A. Vesterinen, A. Poluektov, M. Jung
- For  $|V_{xb}|$ , Belle II is able to perform both inclusive and exclusive measurements with B tagging, including
  - detailed studies of exclusive decays to understand the difference, which is presently seen.
  - precise branching fractions for normalization modes used at LHCb
- Interplay with theoretical studies is important.

1808.10567

| % uncertainties                                    | Statistical | Systematic<br>(reducible, irreducible) | Total Exp | Theory<br>Lattice | Total    |
|----------------------------------------------------|-------------|----------------------------------------|-----------|-------------------|----------|
| $ V_{ub} $ exclusive (had. tagged)                 |             |                                        |           | projection        | ıs       |
| $711 \; { m fb}^{-1}$                              | 3.0         | (2.3, 1.0)                             | 3.8       | 7.0               | 8.0      |
| $5 \text{ ab}^{-1}$                                | 1.1         | (0.9, 1.0)                             | 1.8       | 1.7               | 3.2      |
| $50 \text{ ab}^{-1}$                               | 0.4         | (0.3, 1.0)                             | 1.2       | 0.9               | 1.7      |
| $ V_{ub} $ exclusive (untagged)                    |             |                                        |           |                   |          |
| $605 \text{ fb}^{-1}$                              | 1.4         | (2.1, 0.8)                             | 2.7       | 7.0               | 7.5      |
| $5 \text{ ab}^{-1}$                                | 1.0         | (0.8, 0.8)                             | 1.2       | 1.7               | 2.1      |
| $50 \text{ ab}^{-1}$                               | 0.3         | (0.3, 0.8)                             | 0.9       | 0.9               | 1.3      |
| $ V_{ub} $ inclusive                               |             |                                        |           |                   |          |
| $605 \text{ fb}^{-1} \text{ (old } B \text{ tag)}$ | 4.5         | (3.7, 1.6)                             | 6.0       | 2.5 - 4.5         | 6.5 - 7. |
| $5 \text{ ab}^{-1}$                                | 1.1         | (1.3, 1.6)                             | 2.3       | 2.5 - 4.5         | 3.4 - 5. |
| $50 \text{ ab}^{-1}$                               | 0.4         | (0.4, 1.6)                             | 1.7       | 2.5 - 4.5         | 3.0 - 4. |

#### CKM fit w/ Belle II + LHCb

| Input      | Current WA                      | SM value Belle II       | SM value Belle II+LHCb       |
|------------|---------------------------------|-------------------------|------------------------------|
| A          | $0.8227^{+0.0066}_{-0.0136}$    | $^{+0.0025}_{-0.0027}$  | $^{+0.0024}_{-0.0028}$       |
| $\lambda$  | $0.22543^{+0.00042}_{-0.00031}$ | $0.00036 \\ -0.00030$   | $0.00035 \\ -0.00030$        |
| $ar{ ho}$  | $0.1504^{+0.0121}_{-0.0062}$    | $^{+0.0054}_{-0.0044}$  | +0.0042<br>-0.0040 1808.1056 |
| $ar{\eta}$ | $0.3540^{+0.00069}_{-0.0076}$   | $^{+0.0037}_{-0.00040}$ | $^{+0.0036}_{-0.00037}$      |

#### Current world average



#### Belle II projection @ 50ab<sup>-1</sup>



#### CKM fit w/ Belle II + LHCb

| Input                 | Current WA                      | SM value Belle II      | SM value Belle II+LHCb        |
|-----------------------|---------------------------------|------------------------|-------------------------------|
| A                     | $0.8227^{+0.0066}_{-0.0136}$    | $^{+0.0025}_{-0.0027}$ | $^{+0.0024}_{-0.0028}$        |
| $\lambda$             | $0.22543^{+0.00042}_{-0.00031}$ | $0.00036 \\ -0.00030$  | $0.00035 \\ -0.00030$         |
| $ar{ ho}$             | $0.1504^{+0.0121}_{-0.0062}$    | $+0.0054 \\ -0.0044$   | +0.0042<br>-0.0040 1808.10567 |
| $ar{oldsymbol{\eta}}$ | $0.3540^{+0.00069}_{-0.0076}$   | +0.0037 $-0.00040$     | +0.0036<br>-0.00037           |

$$M_{12}^{d,s} = (M_{12}^{d,s})_{\text{SM}} \times (1 + h_{d,s}e^{2i\sigma_{d,s}})$$

Relative amplitude phase

# u, c, t W u, c, t $\bar{b}$



Belle II 5ab<sup>-1</sup> + LHCb 7fb<sup>-1</sup>



# $B \rightarrow D(*)TV, B \rightarrow TV$

- New Physics may appear in tree level.
- 3rd generation quark (b) and lepton
   (T) involved.
  - large masses → sensitivity to NP
  - Charged Higgs, Leptoquark, ...
- B→D<sup>(\*)</sup> T V and B→ T V are complementary
- Quantities of interest
  - Lepton Flavor Universality :
    - R(D), R(D\*)
  - Polarization:  $P_T$ ,  $P_{D^*}$
  - q<sup>2</sup> distribution etc.



# R(D), R(D\*)

#### Summer 2018 update



Deviation from SM slightly decreased from 4.1  $\rightarrow$  3.8 $\sigma$ , mainly due to change in theoretical SM prediction.



R(D)

#### Talk by Adam Morris

# R(D\*) at LHCb

- Exploit the T vertex isolation.
- $R(D^*)$  muonic  $R(D^*) = 0.336 \pm 0.027 \text{ (stat)} \pm 0.030 \text{ (syst)}$
- $R(J/\psi)$  muonic  $R(J/\psi) = 0.71 \pm 0.17 \text{ (stat)} \pm 0.18 \text{ (syst)}$
- $R(D^*)$  hadronic  $R(D^*) = 0.291 \pm 0.019$  (stat)  $\pm 0.026$  (syst)  $\pm 0.013$  (ext).



#### $R(J/\psi)$ muonic $R(D^*)$ hadronic systematics

| Source                                                        | $\frac{\delta R(D^*)}{R(D^*)}$ [%] |
|---------------------------------------------------------------|------------------------------------|
| Simulated sample size                                         | 4.7                                |
| Empty bins in templates                                       | 1.3                                |
| Signal decay model                                            | 1.8                                |
| $D^{**} 	au  u_{	au}$ and $D_s^{**} 	au  u_{	au}$ feed-down   | 2.7                                |
| $D_s^+\!	o 3\pi^\pm X$ decay model $\ref{1}$                  | 2.5                                |
| $B \rightarrow D^*D_s^+X$ , $D^*D^+X$ , $D^*D^0X$ backgrounds | 3.9                                |
| Combinatorial background                                      | 0.7                                |
| $B  ightarrow D^{*-} 3\pi^{\pm} X$ background                 | 2.8                                |
| Efficiency ratio                                              | 3.9                                |
| Normalisation channel efficiency                              | 2.0                                |
| (modelling of $B^0 	o D^{*-}3\pi^\pm$ )                       |                                    |
| Total systematic uncertainty                                  | 9.1                                |

[PRL 120, 171802 (2018), PRD 97, 0 2013 (2018)]

Belle II may help!

 $D^*$ 

# Belle II Projections

- Lepton universality violation may be established even with 5ab-1 (2020).
- High statistics data will provide more detailed information, such as T polarization, q<sup>2</sup> distribution, to discriminate type of NP.



|                              | ΔR(D) [%] |     |       | ΔF   | R(D*) [9 | %]    |
|------------------------------|-----------|-----|-------|------|----------|-------|
|                              | Stat      | Sys | Total | Stat | Sys      | Total |
| Belle 0.7 ab <sup>-1</sup>   | 14        | 6   | 16    | 6    | 3        | 7     |
| Belle II 5 ab <sup>-1</sup>  | 5         | 3   | 6     | 2    | 2        | 3     |
| Belle II 50 ab <sup>-1</sup> | 2         | 3   | 3     | 1    | 2        | 2     |

Will soon hit the systematic limit!

- More observables (distributions)!
  - $P(\tau), P(D^*)$
  - $d\Gamma/dq^2$ ,  $d\Gamma/dp_{D(*)}$ ,  $d\Gamma/dp_e$ , ...
- More modes!
  - $B \rightarrow \pi \tau \nu$ ,
  - $B_S \rightarrow D_S \tau \nu \text{ (at 5S runs)}, ...$

#### Pinning down leading systematic errors

- Measurement of R(D\*) will be systematic dominated rather soon (at ~5ab-1 at Belle II)
- Leading systematic errors:
  - Uncertainty in D\*\* composition
  - Uncertainty in modeling of B→D\*\* I v kinematics
  - Uncertainty in hadronic B decays as well (for measurements with T hadronic decays)

Belle II will provide much more information

- Differential distribution of narrow and broad components
- More complete study of D\*\* decay width m<sup>2</sup><sub>miss</sub> studies and hadronic modes

Belle, arXiv: 1803.06444

New hadronic tag analysis

- B+ $\rightarrow$ D(\*) $\pi$ +I $\nu$  (I.4k signal)
- $B^0 \rightarrow D^{(*)}\pi^+ l \nu$  (I.Ik signal)
- $\mathcal{B}(B^+ \to D^- \pi^+ \ell^+ \nu)$ =  $[4.55 \pm 0.27 \text{ (stat.)} \pm 0.39 \text{ (syst.)}] \times 10^{-3}$ ,
- $\begin{array}{l} \bullet \ \mathcal{B}(B^0 \to \bar{D}^0 \pi^- \ell^+ \nu) \\ = [4.05 \pm 0.36 \ (\mathrm{stat.}) \ \pm 0.41 \ (\mathrm{syst.})] \times 10^{-3}, \end{array}$
- $\mathcal{B}(B^+ \to D^{*-}\pi^+\ell^+\nu)$ =  $[6.03 \pm 0.43 \text{ (stat.)} \pm 0.38 \text{ (syst.)}] \times 10^{-3}$ ,
- $\mathcal{B}(B^0 \to \bar{D}^{*0}\pi^-\ell^+\nu)$ =  $[6.46 \pm 0.53 \text{ (stat.)} \pm 0.52 \text{ (syst.)}] \times 10^{-3}$ .



O(10) more tags expected!

### Measurement of T polarization

 Belle II will be able to measure distributions; such as T polarization, q<sup>2</sup> distribution, to discriminate type of NP.

#### Measurement of T polarization



Solving the equation,  $\cos\theta_{\rm hel}$  is obtained!

#### $B \rightarrow \tau \nu, I \nu$

- Belle II will be able to measure B→T V precisely, and also measure B→µ V for the first time.
- $B^ \bar{u}$   $W^ \bar{v}_{ au}$
- They will provide useful information to digest NP models (if the present anomalies are confirmed).
- SM branching fraction  $\mathcal{B}(B^-\to\ell^-\bar\nu) = \frac{G_F^2 m_B m_\ell^2}{8\pi} \left(1 \frac{m_\ell^2}{m_B^2}\right)^2 f_B^2 |V_{ub}|^2 \tau_B$
- Parameters
  - B decay constant (FLAG 2016):  $f_B = (186 \pm 4) \,\mathrm{MeV}$
  - CKM element (HFLAV 2016?) :  $|V_{ub}| = (3.55 \pm 0.12) \times 10^{-3}$ 
    - From exclusive measurements

# $\begin{cases} B_{\tau} = (7.7 \pm 0.6) \times 10^{-5} \\ B_{\mu} = (3.5 \pm 0.3) \times 10^{-7} \\ B_{e} = (8.1 \pm 0.6) \times 10^{-12} \end{cases}$

#### Possible correction by NP

$$Br = Br_{SM} \times r_H \qquad r_H = \left| 1 - g_S \right|^2$$

Type II 2HDM, W. S. Hou,   
PRD 48, 2342 (1993), 
$$r_H = \left(1 - \frac{m_B^2}{m_H^2} \tan^2 \beta\right)^2$$

### $B \rightarrow \tau \nu$ , I $\nu$ at Belle II

1808.10567

#### $B \rightarrow TV$

- Exploits high efficiency of the hadronic tag method through the Full Event Interpretation (FEI).
- Selection of photon candidates is important to cope with machine background in Belle II (x20 w.r.t. Belle)
  - Cluster energy, timing, shape (E9/E25)
- Multivariate continuum suppression

#### $B \rightarrow \mu \nu$

- Tagged searches are possible, but efficiency is too low
- Extrapolation from Belle to Belle II
  - Branching fraction error : 7%(stat.)
     at 50ab-1
  - 5σ observation at 6 ab-1



| $E_{ m ECL}$       |                           | $< 1\mathrm{GeV}$ | $<0.25\mathrm{GeV}$ |
|--------------------|---------------------------|-------------------|---------------------|
|                    | Background yield [events] | 12835             | 2062                |
| without background | Signal yield [events]     | 332               | 238                 |
|                    | Signal efficiency (‰)     | 3.8               | 2.7                 |
|                    | Background yield [events] | 7420              | 1348                |
| with background    | Signal yield [events]     | 188               | 136                 |
|                    | Signal efficiency (‰)     | 2.2               | 1.6                 |



| Experiment  | Upper limit @ 90% C.L. | Comment                                                    |
|-------------|------------------------|------------------------------------------------------------|
| Belle [225] | $2.7 \times 10^{-6}$   | Fully reconstructed hadronic tag, $711 \text{ fb}^{-1}$    |
| Belle [226] | $1.1 \times 10^{-6}$   | Untagged analysis, $711 \text{ fb}^{-1}$                   |
| BaBar [222] | $1.0 \times 10^{-6}$   | Untagged analysis, $468 \times 10^6 \ B\overline{B}$ pairs |

#### Constraint on NP

Effect by New physics

$$\mathcal{B}(B^- \to \ell^- \bar{\nu}_\ell)_{\rm NP} = \mathcal{B}(B^- \to \ell^- \bar{\nu}_\ell)_{\rm SM} \times \left| 1 + r_{\rm NP}^\ell \right|^2$$

Present constraints

$$\left|1 + r_{\text{NP}}^{\tau}\right| = 1.17 \pm 0.12, \quad \left|1 + r_{\text{NP}}^{\mu}\right| < 1.7 \ (90\% \ \text{CL}), \quad \left|1 + r_{\text{NP}}^{e}\right| < 348 \ (90\% \ \text{CL}).$$

 Two ratios to reduce theoretical uncertainties:

$$R_{\rm ps} = \frac{\tau_{B^0}}{\tau_{B^-}} \frac{\mathcal{B}(B^- \to \tau^- \bar{\nu}_\tau)}{\mathcal{B}(\bar{B}^0 \to \pi^+ \ell^- \bar{\nu}_\ell)}, \quad R_{\rm pl} = \frac{\mathcal{B}(B^- \to \tau^- \bar{\nu}_\tau)}{\mathcal{B}(B^- \to \mu^- \bar{\nu}_\mu)}.$$

$$R_{\rm ps}^{\rm NP} = (0.539 \pm 0.043) \big| 1 + r_{\rm NP}^\tau \big|^2, \quad \begin{array}{l} {\rm Error\ from\ B \to \pi} \\ {\rm form\ factor\ (f+)} \end{array}$$

$$R_{\rm pl}^{\rm NP} = \frac{m_{\tau}^2}{m_{\mu}^2} \frac{(1 - m_{\tau}^2 / m_B^2)^2}{(1 - m_{\mu}^2 / m_B^2)^2} |1 + r_{\rm NP}^{\tau}|^2 \simeq 222.37 |1 + r_{\rm NP}^{\tau}|^2.$$

Current constraint from Rexpps

$$= 0.73 \pm 0.14$$



#### Belle II projection

$$R_{\rm ps}^{5\,{\rm ab}^{-1}} = 0.54 \pm 0.11 \,, \quad R_{\rm ps}^{50\,{\rm ab}^{-1}} = 0.54 \pm 0.04 \,,$$
  
 $R_{\rm pl}^{5\,{\rm ab}^{-1}} = 222 \pm 76 \,, \qquad R_{\rm pl}^{50\,{\rm ab}^{-1}} = 222 \pm 26 \,.$ 

95%C.L. limit on r<sup>T</sup>NP

| Luminosity           | $R_{\rm ps}$  | $R_{ m pl}$   |
|----------------------|---------------|---------------|
| $5\mathrm{ab^{-1}}$  | [-0.22, 0.20] | [-0.42, 0.29] |
| $50\mathrm{ab^{-1}}$ | [-0.11, 0.12] | [-0.12, 0.11] |

# Testing B anomalies at ATLAS/CMS (e.g. LQ model)

1808.10567

- The Leptoquark (LQ) model is a favored model, which can explain observed anomalies consistently: P5', R\_K(\*), R(D(\*))
  - Coupling to 3rd gen. > to 2nd gen. >> to 1st gen.

e.g.: scalar leptoquark





Once B anomalies are confirmed, it would be interesting to see results of ATLAS/CMS w/ 300fb-1

### $b \rightarrow s / l decays$





#### $b \rightarrow s II$ inclusive

Belle II can provide data from inclusive measurements

sum of exclusive, as done by Belle

#### [Belle, arXiv:1402.7134]

10 modes,  $M(X_s) < 2.0$  GeV 50% of total inclusive rate (goal here was  $A_{FB}$ , flavor of B needed)

| $\bar{B}^{0}$                | decays                                                | $B^-$ decays                 |                               |  |
|------------------------------|-------------------------------------------------------|------------------------------|-------------------------------|--|
|                              | $(K_S^0)$                                             | $K^-$                        |                               |  |
| $K^-\pi^+$                   | $(K_S^0 \pi^0)$                                       | $K^{-}\pi^{0}$               | $K_S^0\pi^-$                  |  |
| $K^{-}\pi^{+}\pi^{0}$        | $(K_S^0 \pi^- \pi^+)$                                 | $K^{-}\pi^{+}\pi^{-}$        | $K_S^0 \pi^- \pi^0$           |  |
| $K^{-}\pi^{+}\pi^{-}\pi^{+}$ | $(K_S^0 \pi^- \pi^+ \pi^0)$                           | $K^{-}\pi^{+}\pi^{-}\pi^{0}$ | $K_S^0 \pi^- \pi^+ \pi^-$     |  |
| $(K^-\pi^+\pi^-\pi^+)$       | $\pi^{0}$ ) $(K_{S}^{0}\pi^{-}\pi^{+}\pi^{-}\pi^{+})$ | $(K^-\pi^+\pi^-\pi^+\pi^-)$  | $K_S^{0}\pi^-\pi^+\pi^-\pi^0$ |  |



#### 1808.10567

| Observables                                                          | Belle $0.71\mathrm{ab^{-1}}$ | Belle II $5\mathrm{ab^{-1}}$ | Belle II $50\mathrm{ab^{-1}}$ |
|----------------------------------------------------------------------|------------------------------|------------------------------|-------------------------------|
| $Br(B \to X_s \ell^+ \ell^-)$ ([1.0, 3.5] $GeV^2$ )                  | 29%                          | 13%                          | 6.6%                          |
| $Br(B \to X_s \ell^+ \ell^-)$ ([3.5, 6.0] $GeV^2$ )                  | 24%                          | 11%                          | 6.4%                          |
| $Br(B \rightarrow X_s \ell^+ \ell^-) (> 14.4 \text{ GeV}^2)$         | 23%                          | 10%                          | 4.7%                          |
| $A_{\rm CP}(B \to X_s \ell^+ \ell^-) \ ([1.0, 3.5]  {\rm GeV}^2)$    | 26%                          | 9.7 %                        | 3.1 %                         |
| $A_{\rm CP}(B \to X_s \ell^+ \ell^-)$ ([3.5, 6.0] GeV <sup>2</sup> ) | 21%                          | 7.9 %                        | 2.6 %                         |
| $A_{\rm CP}(B \to X_s \ell^+ \ell^-) \ (> 14.4 \ {\rm GeV^2})$       | 21%                          | 8.1 %                        | 2.6 %                         |
| $A_{\rm FB}(B \to X_s \ell^+ \ell^-)$ ([1.0, 3.5] GeV <sup>2</sup> ) | 26%                          | 9.7%                         | 3.1%                          |
| $A_{\rm FB}(B \to X_s \ell^+ \ell^-)$ ([3.5, 6.0] GeV <sup>2</sup> ) | 21%                          | 7.9%                         | 2.6%                          |
| $A_{FB}(B \to X_s \ell^+ \ell^-) \ (> 14.4 \text{ GeV}^2)$           | 19%                          | 7.3%                         | 2.4%                          |
| $\Delta_{CP}(A_{FB})$ ([1.0, 3.5] GeV <sup>2</sup> )                 | 52%                          | 19%                          | 6.1%                          |
| $\Delta_{CP}(A_{FB})$ ([3.5, 6.0] GeV <sup>2</sup> )                 | 42%                          | 16%                          | 5.2%                          |
| $\Delta_{\rm CP}(A_{\rm FB}) \ (> 14.4 \ {\rm GeV^2})$               | 38%                          | 15%                          | 4.8%                          |





### $b \rightarrow s \tau \tau, s \tau l$

Tauonic channels become more interesting, as R(D(\*)) get more

precise!

#### $B \rightarrow K^{(*)} \tau \tau$

1808.10567

| Observables                                        | Belle $0.71 \mathrm{ab^{-1}}  (0.12 \mathrm{ab^{-1}})$ | Belle II 5 ab <sup>-1</sup> | Belle II 50 ab <sup>-1</sup> |
|----------------------------------------------------|--------------------------------------------------------|-----------------------------|------------------------------|
| $Br(B^+ \rightarrow K^+ \tau^+ \tau^-) \cdot 10^5$ | < 32                                                   | < 6.5                       | < 2.0                        |
| $Br(B^0 \rightarrow \tau^+\tau^-) \cdot 10^5$      | < 140                                                  | < 30                        | < 9.6                        |
| $Br(B_s^0 \rightarrow \tau^+\tau^-) \cdot 10^4$    | < 70                                                   | < 8.1                       | _                            |

#### $B \rightarrow K^{(*)} \tau \mu$

1808.10567

| Observables                                               | Belle $0.71 \mathrm{ab^{-1}}  (0.12 \mathrm{ab^{-1}})$ | Belle II 5 ab <sup>-1</sup> | Belle II 50 ab <sup>-1</sup> |
|-----------------------------------------------------------|--------------------------------------------------------|-----------------------------|------------------------------|
| $Br(B^+ \rightarrow K^+ \tau^{\pm} e^{\mp}) \cdot 10^6$   | -                                                      | -                           | < 2.1                        |
| $Br(B^+ \rightarrow K^+ \tau^{\pm} \mu^{\mp}) \cdot 10^6$ | _                                                      | _                           | < 3.3                        |
| $Br(B^0 \rightarrow \tau^{\pm}e^{\mp}) \cdot 10^5$        | _                                                      | _                           | < 1.6                        |
| $Br(B^0 \rightarrow \tau^{\pm}\mu^{\mp}) \cdot 10^5$      | -                                                      | -                           | < 1.3                        |





# Wilson coefficients with Belle II and LHCb

J. Albrecht et al., 1709.10308

Wilson coefficient scan under given NP scenarios.

|                    | $(C_9^{\text{NP}^{\mu\mu}}, C_{10}^{\text{NP}^{\mu\mu}})$ | $(C_9^{\prime\mu\mu}, C_{10}^{\prime\mu\mu})$ | $(C_9^{\mathrm{NP}^{\mu\mu}}, C_9^{\mathrm{NP}^{ee}})$ | $(\mathcal{R}e\left(C_7^{\prime\mathrm{NP}}\right),\mathcal{I}m\left(C_7^{\prime\mathrm{NP}}\right))$ | $(\mathcal{R}e\left(C_7^{\mathrm{NP}}\right),\mathcal{I}m\left(C_7^{\mathrm{NP}}\right))$ |
|--------------------|-----------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| LHCb               | (-1.0, 0.0)                                               | (-0.2, -0.2)                                  | (-1.0, 0.0)                                            | (0.00, 0.04)                                                                                          | (-0.075, 0.000)                                                                           |
| Belle II exclusive | (-1.4, 0.4)                                               | (0.4, 0.2)                                    | (-1.4, -0.7)                                           | (0.08, 0.00)                                                                                          | (-0.050, 0.050)                                                                           |
| Belle II inclusive | (-0.8, 0.6)                                               | (0.8, 0.2)                                    | (-0.8, 0.4)                                            | (0.02, -0.06)                                                                                         | (-0.050, -0.075)                                                                          |

With projected uncertainties at milestones

Belle II(ab-1) LHCb(fb-1) 5 8 50 22 50







# LFV T Decays

- Lepton flavor violated in the neutrino sector.
- Complementary to LHC
- T LFV complementary to muon programs
  - μ→eγ, eee
  - μ→e conversion





### Comparison between NP models

 Ratios of tau LFV decay BF allow to discriminate between new physics models.

|                                                                              | SUSY+GUT<br>(SUSY+Seesaw) | Higgs mediated | Little Higgs | non-universal<br>Z' boson |
|------------------------------------------------------------------------------|---------------------------|----------------|--------------|---------------------------|
| $\frac{\mathcal{B}(\tau \to \mu \mu \mu)}{\mathcal{B}(\tau \to \mu \gamma)}$ | ~ 2×10-3                  | 0.06 - 0.1     | 0.4 - 2.3    | ~16                       |
| $\frac{\mathcal{B}(\tau \to \mu e e)}{\mathcal{B}(\tau \to \mu \gamma)}$     | ~  × 0-2                  | ~  × 0-2       | 0.3 - 1.6    | ~16                       |
| $\mathcal{B}(\tau \to \mu \gamma)_{\rm max}$                                 | < 10-7                    | < 10-10        | < 10-10      | < 10-9                    |

Favorite modes



# Tau analysis at Belle II

- 40 times higher luminosity gives higher machine induced backgrounds, which complicate tau analyses.
  - Touschek, beam gas, SR, radiative Bhabha, ...
- Mitigation of backgrounds have been studied based on MC.
  - Cluster energy, timing, + charged track selection (Pt, dz)



# Tau LFV prospect at Belle II



- Belle II will push down the current bounds further by more than an order of magnitude.
- Need to check the actual background situation with real beams.
- It is also important to increase sensitivity by improved analysis technique.

# Tau LFV and Higgs LFV decays

CMS, 35.9 fb<sup>-1</sup>, 13 TeV

- CMS PAS HIG-17-001
- tau reconstructed by both septic and hadronic decays.
- The observed (expected) limit (95%C.L.):
  - Br( $H \rightarrow \mu \tau$ ) < 0.25 (0.25) %
  - $Br(H \rightarrow eT) < 0.61 (0.37) \%$



$$\sqrt{|Y_{\mu\tau}|^2 + |Y_{\tau\mu}|^2} < 1.43 \times 10^{-3}$$

$$\sqrt{|Y_{e\tau}|^2 + |Y_{\tau e}|^2} < 2.26 \times 10^{-3}$$





Comparison of improved limits by Belle II with LHC will be interesting.

# Tau LFV and SUSY direct search at ATLAS/CMS

• Constraints on neutralino and slept mass from  $\tau \rightarrow \mu \gamma$  based on MSSM.

1808.10567



# SuperKEKB/Belle II Plan

#### Phase I (w/o QCS/Belle II)

 Accelerator basic tuning with single beams

### Phase 2 (w/ QCS/Belle II but w/o VXD)

- Verification of nano-beam scheme
- Understand beam background

#### Phase 3 (w/ full detector)

- lab-| after | year
- 5ab-1 by ~2020
- 50ab-1 by ~2025



### First Collision!

0:38, April 26, 2018





# First Collision!

0:38, April 26, 2018



### First Collision!

0:38, April 26, 2018



### Collision with Nano-Beam









Phase 2 vertex data verify collision spot much shorter than the bunch length.

# Luminosity during Phase 2



5.55 x  $10^{33}$ /cm<sup>2</sup>/s ( $\beta$ y\*3mm, LER: 800mA, HER: 780mA, 1576 bunches/beam July 5<sup>th</sup>) 2.29 x  $10^{33}$ /cm<sup>2</sup>/s ( $\beta$ y\*3mm, LER: 270mA, HER: 225mA, 394 bunches/beam July 3<sup>rd</sup>)

### Belle II performance in Phase 2

 Clear mass peak observed by combining charged tracks and photons



### B reconstruction in Phase 2

B meson signals have been seen in Phase 2 data.

Hadronic B decay modes

Semileptonic B decay modes



## $T \rightarrow 3\pi\nu$ in Belle II early data

• 291pb-1 in Phase 2 run.

#### $M_{3\pi}$ distribution



Preliminary T mass measurement  $m_{\tau} = (1776.4 \pm 4.8 \text{ (stat)}) \text{ MeV/c}^2$  consistent with previous results

Talk by Michel H. Villanueva at TAU2018





### Prospect toward Phase 3

- SVD has been constructed, and being commissioned with cosmic rays.
- PXD ladders have been delivered to KEK.
- VXD mounting on beam pipe in progress.
- VXD installation in Belle II expected in November.
- Phase 3 will start near the end of JFY2018.



#### Completion of 2nd SVD half shell



SVD commissioning w/ cosmic ray



PXD 2nd half shell

### No NP at LHC so far

The mass region ~ITeV almost excluded?















### We know this old road...



by Hiroshige Utagawa (1797-1858)

# Learning from history

- Suppressed K<sup>0</sup>→µµ (GIM) → Charm quark !
- CPV in  $K_L^0 \to \pi\pi(KM) \to 3rd$  generation !!
- B-B oscillation → Top is heavy !!!



Physicists were rather optimistic before ARGUS observed this!

# Summary to find NP

- The role of flavor physics is important.
- Belle II is ramping up !, and data will be on market soon !!
   As Belle II accumulate data, interplays are important with

#### LHCb

- friendly competition
- supplement information: precise branching fractions for normalization modes, detailed studies of physical background such as  $D^{**}$  I  $\nu$  for  $R(D^{(*)})$

#### ATLAS / CMS

 it would be interesting to test collider data with given NP models, which can explain anomalies in flavor data.

#### Theorists

- to reduce theoretical uncertainties
- to interpret data and feedback.

Stay Tuned!





#### Belle II Outreach







 $\bigtriangleup$  una! Q コメントする  $\Leftrightarrow$  シェアする

Also public HP: belle2.jp



#### Belle II Outreach







いいね! □ コメントする ⇔ シェアする

Also public HP: belle2.jp

# Thank you!

### Backup Slides

