

The superconducting final focus is partially visible here (before closing the endcap).

Completion of the 2nd SVD half shell; 1st PXD half-shell at KEK

Belle II

Physics Program (B factory flavour physics) Phillip Urquijo The University of Melbourne

THE 62ND ICFA ADVANCED BEAM DYNAMICS WORKSHOP ON HIGH LUMINOSITY CIRCULAR e⁺e⁻ COLLIDERS (eeFACT2018)

24-27 Sep 2018

THE UNIVERSITY OF **MELBOURNE**

Belle I @ Super-KEKB Intensity frontier B-factory experiment, Successor to Belle @KEKB (1999-2010)

Belle II

detector

7 GeV e⁻, 4 GeV e⁺ E_{CM} Y(4S) = 10.58 GeV + scans Y(4S) → Banti-B

B + Charm + τ factory

Belle II now has grown to ~800 researchers (267 grad students) from 25 countries

Heavy flavour data sets from colliders

 Supe Uniquination Uniquination 	rKEKB is the fue strengths ing energy de	first new co n CKM meti cays.	Observables UT angles & sides $\phi_1 \ [^\circ]$ $\phi_2 \ [^\circ]$ $\phi_3 \ [^\circ]$ $ V_{cb} $ incl. $ V_{cb} $ excl. $ V_{ub} $ incl. $ V_{ub} $ incl.	Expected the. accuracy *** ** ** ** ** *** *** *** *** ***	Expected exp. uncertainty 0.4 1.0 1.0 1% 1.5% 3% 2%	Fac Be Be Be Be Be		
Expt.	∫ <i>L</i> dt	σ(bb)	σ(cc)	Operation	$ \frac{(V, u_0)^{-} \text{ orden}}{\text{CPV}} $ $ \frac{S(B \to \phi K^0)}{S(B \to \eta' K^0)} $ $ \frac{\mathcal{A}(B \to K^0 \pi^0)[10^{-2}]}{\mathcal{A}(B \to K^+ \pi^-) [10^{-2}]} $ $ \frac{(\text{Semi-)leptonic}}{(\text{Semi-)leptonic}} $	*** *** *** ***	0.02 0.01 4 0.20	Be Be Be LH
Babar	530 fb ⁻¹	1.1 nb	1.6 nb	1999-2008	$\mathcal{B}(B \to \tau\nu) \ [10^{-6}] \\ \mathcal{B}(B \to \mu\nu) \ [10^{-6}] \\ R(B \to D\tau\nu) \\ P(B \to D^*\nu) $	** ** *** SL	3% 7% 3%	Be Be Be
Belle	1040 fb ⁻¹	1.1 nb	1.6 nb	1999-2010	$\frac{R(B \to D^* \tau \nu)}{\text{Radiative \& EW Penguins}}$ $\mathcal{B}(B \to X_s \gamma)$	**	<u>2%</u> 4%	Be Be
Belle II	0.5 fb ⁻¹ (50 ab ⁻¹)	1.1 nb	1.6 nb	2018-	$A_{CP}(B \to X_{s,d}\gamma) \ [10^{-2}]$ $S(B \to K_S^0 \pi^0 \gamma)$ $S(B \to \rho \gamma)$ $\mathcal{B}(B_s \to \gamma \gamma) \ [10^{-6}]$ $\mathcal{B}(B \to K^* \nu \overline{\nu}) \ [10^{-6}]$	*** ** ** *** ***	0.005 0.03 0.07 0.3 15% 20%	Be Be Be Be
BESIII	~16 fb-1	_	6 nb (3770 MeV)	2008-	$ \begin{array}{c} \mathcal{B}(B \to K \nu \nu) \ [10^{-6}] \\ \overline{R(B \to K^* \ell \ell)} \\ \hline \text{Charm} \\ \mathcal{B}(D_s \to \mu \nu) \\ \mathcal{B}(D_s \to \tau \nu) \\ A_{CP}(D^0 \to K_S^0 \pi^0) \ [10^{-2}] \end{array} $	*** *** *** *** **	$\begin{array}{c} 20\% \\ 0.03 \\ 0.9\% \\ 2\% \\ 0.03 \end{array}$	Be Be Be Be
LHCb	1 + 2 + >5 fb ⁻¹	250-500 µb	1200-2400 μb	2009-	$ q/p (D^{0} \to K_{S}^{0}\pi^{+}\pi^{-})$ $\phi(D^{0} \to K_{S}^{0}\pi^{+}\pi^{-}) [^{\circ}]$ Tau $\tau \to \mu\gamma \ [10^{-10}]$ $\tau \to e\gamma \ [10^{-10}]$ $\tau \to \mu\mu\mu \ [10^{-10}]$	*** *** *** *** ***	0.03 4 < 50 < 100 < 3	Be Be Be Be
					_			

Phillip URQUIJO

3 Generations, 1 Phase: single source of CPV in the SM.

Wolfenstein parameterisation Phase invariant, conserving (matrix unitarity at any order i

$$\gamma = (72.1^{+5.4}_{-5.8})^{\circ}$$

$$b \rightarrow u$$

$$\beta^{2} \equiv \frac{|V_{us}|^{2}}{|V_{us}|^{2} + |V_{us}|}$$

$$B^{0} \rightarrow D^{1} \sqrt{t} d^{2} + |V_{us}|$$

$$R_{td} V_{td} V_{tb}^{*}$$

0.6 0.5 0.4 0.2

0.3

0.1

CKM and CPV SM Metrology: Belle II core program

• How do we measure the CKM parameters?

 $B \rightarrow D^* l \nu / b \rightarrow c l \nu |\mathbf{V_{cb}}|$ via Form factor / OPE $B \rightarrow \pi \pi, \rho \rho$ α / Φ_2 $B \rightarrow \pi l \nu / b \rightarrow u l \nu$ |**V**_{ub}| via Form factor / OPE $B \rightarrow D^{(*)} K^{(*)}$ γ / Φ_3 $M \rightarrow l \vee (\gamma)$ $B \rightarrow J/\Psi K_s$ **VUD** via Decay constant f_M β / Φ_1 |V_{tb} V_{t{d,s}}| via Bag factor B_B $B_s \rightarrow J/\psi \Phi$ $\Delta m_d, \Delta m_s$ βs

eeFACT Hong Kong 2018

Lepton flavour universality

eeFACT Hong Kong 2018

Phillip URQUIJO

Experimentally good for leptonic decays to an accuracy much better than 1%.

Now can access the 3rd generation of leptons and couple to quarks!

The only SM differences are are due to masses - easy* to calculate!

Any further difference would imply non-SM interaction.

R(D) and R(D*) Tree anomalies

2018 summer World Average is (still) 4σ from the SM

eeFACT Hong Kong 2018

A similar ratio was measured in e Vs. μ at ICHEP 2018 at 3% precision (agreed with SM).

Phillip URQUIJO

Lepton reconstruction non-universality

- detectors, no strong interactions
- material is likely.
- daughters are lost e.g. K_L , π^0 .

SuperKEKB

QCS(R) before connecting to Belle II

- Brand-new positron damping ring (commissioned 2018). 1)
- New 3 km positron ring vacuum chamber 2) (commissioned in 2016). Optics and vacuum scrubbing in 2018.
- 3) New complex superconducting final focus (commissioned 2018).

eeFACT Hong Kong 2018

Phillip URQUIJO

10

THE UNIVERSITY OF

SuperKEKB/Belle II Luminosity Profile

eeFACT Hong Kong 2018

Phillip URQUIJO

First collisions (April 26)

SuperKEKB/Belle II joins DORIS/ARGUS, CESR/ CLEO, and PEP-II/BaBar and KEKB/Belle.

Phillip URQUIJO

Large crossing angle nano-beams

Ordinary collision (KEKB)

 $\sigma = 4.5 \text{ mm}$

eeFACT Hong Kong 2018

Phillip URQUIJO

[0.0]

Nano-Beam (SuperKEKB Phase2)

As expected, the effective bunch length is *reduced* from ~5 mm (KEKB) to 0.5 mm (SuperKEKB) We measure this in 2-track events in Belle II data with one wedge of the silicon detector.

Luminosity in 2018

PEP-II design luminosity 3 x 10³³

Phase 2 run, April-July 2018

Integrated luminosity ~ 500/pb Measured with $ee \rightarrow ee(\gamma), \gamma\gamma, \mu\mu(\gamma)$

Beam background / Commissioning

Phase 1 2016 : Simple background commissioning detector (diodes, diamonds TPCs, crystals...). No final focus. Only single beam studies.

<u>Phase 2 2018</u>: Full Belle II outer detector. Full superconducting final focus. Collisions ! Result: Safe to install silicon detectors!

σ~ 100 nb

Belle II Detector

EM Calorimeter: CsI(Tl), waveform sampling (barrel+ endcap)

Beryllium beam pipe 2cm diameter

Vertex Detector 2 lavers DEPFET + 4 lavers DSSD

> Central Drift Chamber $He(50\%):C_2H_6(50\%)$, small cells, long lever arm, fast electronics (Core element)

layers)

K-Long and muon detector: Resistive Plate Chambers (barrel outer

Scintillator + WLSF + SiPM's (end-caps , inner 2 barrel layers)

Particle Identification iTOP detector system (barrel) **Prox. focusing** Aerogel RICH (fwd)

Particle identification in 2018

Central Drift Chamber dE/dx & Time of propagation Cherenkov patterns - 2018 data

Phillip URQUIJO

Nice examples of signal involving photons

Phillip URQUIJO

- Most subsystems work well.
- resolution good to better than 5%.

THE UNIVERSITY OF **MELBOURNE**

Charm "rediscovery"

Open charm, D⁰, D⁺, D_s⁺, D^{*+}, D^{*0} and Charmonium J/ ψ . Found the difficult to see D⁰ \rightarrow K_S π^{0} .

eeFACT Hong Kong 2018

- Clearly illustrates the capabilities of Belle II and the potential for charm physics and the <u>building</u> blocks of B mesons.
- <u>CP Eigenstate</u> $D^0 \rightarrow K_S \pi^0$ impossible to see at LHCb!

- We are on the Y(4S) resonance and recording B anti-B pairs with ~99% efficiency.
- Not so obvious: When we change accelerator optics, we remain on Y(4S).

0.1

0.2

0.3

0.4 0.5

0.6

0.7

0.8

$$\mathsf{R}_2 = \mathsf{H}_2/\mathsf{H}_0 \qquad H_l = \sum_{i,j} \frac{|\mathbf{p}_i| |\mathbf{p}_j|}{E_{\mathrm{vis}}^2} P_l(\cos\theta)$$

Phillip URQUIJO

21

data

MC total

MC BB

MC qq

ΜC ττ

Belle II

Preliminary

- - hadronic modes (470/pb)

VOLUME	50, NUMBER	12

eeFACT Hong Kong 2018

Phillip URQUIJO

First Cosmic Ray Muon in the full SVD at KEK, August 2018

SVD is on-track for mid-October integration with the PXD and installation in time for the Phase 3 run in late Feb 2019.

Novel silicon—dedicated tracking. Good for D* efficiencies $< p_{\pi-slow} > ~ 100 \text{ MeV}.$

eeFACT Hong Kong 2018

23

THE UNIVERSITY O

MELBOURNE

Pixel detector ready

eeFACT Hong Kong 2018

Phillip URQUIJO

PXD mounted onto SuperKEKB beam pipe at KEK. The full VXD (PXD+SVD) should be completed within weeks.

• Impact parameters: σ_{d0} Belle II < 0.5 x σ_{d0} Belle, Mass: σ_M Belle II ~ 0.7 x σ_M Belle

• Belle (II) analyses use semileptonic and hadronic "tagging".

• Based on M_{miss}² and calorimeter extra energy E_{ECL/extra}

eeFACT Hong Kong 2018

• Belle (II) analyses use semileptonic and hadronic "tagging".

Based on M_{miss}² and calorimeter extra energy E_{ECL/extra}

University of Zurich, 2016, May 9 eeFACT Hong Kong 2018 e^+ \checkmark $\gamma(\Lambda C)$

 e^+

• Belle (II) analyses use semileptonic and hadronic "tagging".

Based on M_{miss}² and calorimeter extra energy E_{ECL/extra}

eeFACT Hong Kong 2018

• Belle (II) analyses use semileptonic and hadronic "tagging".

Based on M_{miss}² and calorimeter extra energy E_{ECL/extra}

B-full reconstruction in 2018

$B \rightarrow D^* \tau^- v$ Measurements

• Belle: Semileptonic tag, 772M B anti-B pairs

- B0 \rightarrow D^{*-} τ + v : 231±23(stat) events B0 \rightarrow D^{*-} l+ v: 2800±57(stat.) events.
- $R(D^*) = 0.302 \pm 0.030 \pm 0.011$

 $\cos\theta_{B-D^*l}^{\mathrm{sig}}$ $M_{\rm miss}^2$

eeFACT Hong Kong 2018

Phillip URQUIJO

0.4

$B \rightarrow D(*) \tau v$

- Belle II should confirm/deny anomaly with 5 ab⁻¹
- **Determine the type of mediator by** analysis of kinematic spectra with 50 ab⁻¹

eeFACT Hong Kong 2018

$B \rightarrow D(*) \tau v$

- Belle II should confirm/deny anomaly with 5 ab⁻¹
- Determine the type of mediator by analysis of kinematic spectra with 50 ab⁻¹

eeFACT Hong Kong 2018

Belle II Physics Book

Phillip URQUIJO

$B \rightarrow D(*) \tau v$

- Belle II should confirm/deny anomaly with 5 ab⁻¹
- Determine the type of mediator by analysis of kinematic spectra with 50 ab⁻¹

eeFACT Hong Kong 2018

Belle II Physics Book

Phillip URQUIJO

$|V_{ub}|$ and $B \rightarrow |v|$

- |V_{ub}| only measured to about 10% accuracy $\rightarrow 1\%$ at Belle II.
- 5 σ discoveries of B \rightarrow τ v and B \rightarrow μ v expected with $< 5 \text{ ab}^{-1}$.

eeFACT Hong Kong 2018

E. Kou, PU et al. arXiv: 1808.10567

L [ab ⁻¹]		$\sigma V_{ub} $
50	$B \rightarrow \pi l \nu$	1.2
	$B \rightarrow \tau \nu$	1.5 -
	$B \rightarrow \mu \nu$	5

Phillip URQUIJO

V_{ub} and B→lv

- $|V_{ub}|$ only measured to about 10% accuracy \rightarrow 1% at Belle II.
- 5σ discoveries of $B \rightarrow \tau \nu$ and $B \rightarrow \mu$ v expected with < 5 ab^{-1} .

eeFACT Hong Kong 2018

E. Kou, PU et al. arXiv: 1808.10567

L [ab-1]		$\sigma V_{ub} $
50	$B \rightarrow \pi l \nu$	1.2
	$B \rightarrow \tau \nu$	1.5 -
	$B \rightarrow \mu \nu$	5

CP Violation

- $\Phi_1 @ 0.7\%, \Phi_2 < 1^\circ, \Phi_3 \sim 1^\circ$
- Search for new phases in $b \rightarrow s$ gluon and EW penguins
- TDCP Violation flavour tagging at Belle II ~ 35%

 $\phi_{_3}$ [deg] Uncertainty

• Gluonic Penguin (NP sensitive)

(NP sensitive)

(phase of V_{ub}) - $B \rightarrow D^{(*)}K^{(*)}$

30

CKM Global Fit Projection: Belle II

E. Kou, PU et al. arXiv: 1808.10567

CKM Global Fit Projection: Belle II

E. Kou, PU et al. arXiv: 1808.10567

The RACE for R(K*) NP discovery

Belle II can do both inclusive and exclusive. Equally strong capabilities for electrons and muons (LHCb not as good for e)

eeFACT Hong Kong 2018

Belle PRL. 118 (2017) no.11, 111801 E. Kou, PU et al. arXiv: 1808.10567

$$\mathcal{H}_{\text{eff}} = -\frac{4\,G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_i (C_i O_i + C_i' O_i')$$

 $O_9 = (\bar{s}\gamma_\mu P_L b)(\ell\gamma^\mu \ell) \,,$

 $O_{10} = (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell),$

b→sµµ Vs b→see Belle II 50 ab⁻¹ Vs LHCb 50 fb⁻¹

Phillip URQUIJO

32

+ h.c.

THE UNIVERSITY OF **MELBOURNE**

Phillip URQUIJO

Roadmap

 Our most powerful tests will continue to be statistics limited, clean theoretically and systematically.

Summary

- Belle II will explore New Physics on the Luminosity or Intensity Frontier.
- Belle II / SuperKEKB came online in 2018 rediscovered heavy flavour : charm, beauty and τ .
- We are ready to start a long physics run in the Super Factory mode (Phase 3). This requires *high-efficiency* data-taking by Belle II and *extensive running* by Super KEK-B, soon to be the world's highest luminosity accelerator.
- There is competition and complementarity with LHCb and BES III.

E. Kou, PU (Editors) et al., arXiv: 1808.10567 (688p), Submitted to PTEP

KEK Preprint 2018-27 BELLE2-PAPER-2018-001 FERMILAB-PUB-18-398-T JLAB-THY-18-2780 INT-PUB-18-047

The Belle II Physics Book

E. Kou^{73,¶,†}, P. Urquijo^{141,§,†}, W. Altmannshofer^{131,¶}, F. Beaujean^{77,¶}, G. Bell^{118,¶}, M. Beneke^{110,¶}, I. I. Bigi^{144,¶}, F. Bishara^{146,16,¶}, M. Blanke^{48,49,¶}, C. Bobeth^{109,110,¶}, M. Bona^{148,¶}, N. Brambilla^{110,¶}, V. M. Braun^{42,¶}, J. Brod^{108,131,¶}, A. J. Buras^{111,¶}, H. Y. Cheng^{43,¶}, C. W. Chiang^{90,¶}, G. Colangelo^{124,¶}, H. Czyz^{152,29,¶}, A. Datta^{142,¶}, F. De Fazio^{51,¶}, T. Deppisch^{49,¶}, M. J. Dolan^{141,¶}, S. Fajfer^{105,137,¶}, T. Feldmann^{118,¶}, S. Godfrey^{7,¶}, M. Gronau^{60,¶}, Y. Grossman^{15,¶}, F. K. Guo^{40,130,¶}, U. Haisch^{146,11,¶}, C. Hanhart^{21,¶}, S. Hashimoto^{30,26,¶}, S. Hirose^{87,¶}, J. Hisano^{87,88,¶}, L. Hofer^{123,¶}, M. Hoferichter^{164,¶}, W. S. Hou^{90,¶}, T. Huber^{118,¶}, S. Jaeger^{155,¶}, S. Jahn^{81,¶}, M. Jamin^{122,¶}, J. Jones^{101,¶}, M. Jung^{109,¶}, A. L. Kagan^{131,¶}, F. Kahlhoefer^{1,¶}, J. F. Kamenik^{105,137,¶}, T. Kaneko^{30,26,¶}, Y. Kiyo^{62,¶}, A. Kokulu^{110,136,¶}, N. Kosnik^{105,137,¶}, A. S. Kronfeld^{20,¶}, Z. Ligeti^{19,¶}, H. Logan^{7,¶}, C. D. Lu^{40,¶}, V. Lubicz^{149,¶}, F. Mahmoudi^{138,¶}, K. Maltman^{169,120,¶}, M. Misiak^{162,¶} S. Mishima^{30,¶}, K. Moats^{7,¶}, B. Moussallam^{72,¶}, A. Nefediev^{38,86,75,¶}, U. Nierste^{49,¶}, D. Nomura^{30,¶}, N. Offen^{42,¶}, S. L. Olsen^{129,¶}, E. Passemar^{36,114,¶}, A. Paul^{56¶}, G. Paz^{166,¶}, A. A. Petrov^{166,¶}, A. Pich^{161,¶}, A. D. Polosa^{56,¶}, J. Pradler^{39,¶}, S. Prelovsek^{105,137,42,¶}, M. Procura^{119,¶}, G. Ricciardi^{52,¶}, D. J. Robinson^{128,19,¶}, P. Roig^{9,¶}, S. Schacht^{58,¶}, K. Schmidt-Hoberg^{16,¶}, J. Schwichtenberg^{49,¶} S. R. Sharpe^{163,¶}, J. Shigemitsu^{113,¶}, N. Shimizu^{158,¶}, Y. Shimizu^{67,¶}, L. Silvestrini^{56,¶}, S. Simula^{57,¶}, C. Smith^{74,¶}, P. Stoffer^{127,¶}, D. Straub^{109,¶}, F. J. Tackmann^{16,¶}, M. Tanaka^{96,¶}, A. Tayduganov^{108,¶} G. Tetlalmatzi-Xolocotzi^{93,¶}, T. Teubner^{136,¶}, A. Vairo^{110,¶}, D. van Dyk^{110,¶}, J. Virto^{80,110,¶}, Z. Was^{91,¶}, R. Watanabe^{143,¶}, I. Watson ^{151,¶}, J. Zupan^{131,¶}, R. Zwicky^{132,¶}, F. Abudinén^{81,§}, I. Adachi^{30,26,§}, K. Adamczyk^{91,§}, P. Ahlburg^{125,§}, H. Aihara^{158,§}, A. Aloisio^{52,§}, L. Andricek^{82,§}, N. Anh Ky^{44,§}, M. Arndt^{125,§},
 D. M. Asner^{5,§}, H. Atmacan^{154,§}, T. Aushev^{85,§}, V. Aushev^{106,§}, R. Ayad^{157,§} T. Aziz^{107,§}, S. Baehr^{47,§}, S. Bahinipati^{32,§}, P. Bambade^{73,§}, Y. Ban^{100,§}, M. Barrett^{166,§}, J. Baudot^{46,§}, P. Behera^{35,§}, K. Belous^{37,§}, M. Bender^{76,§}, J. Bennett^{8,§}, M. Berger^{39,§}, E. Bernieri^{57,§}, F. U. Bernlochner^{47,§}, M. Bessner^{134,§}, D. Besson^{86,§}, S. Bettarini^{55,§}, V. Bhardwaj^{31,§}, B. Bhuyan^{33,§}, T. Bilka^{10,§},
S. Bilmis^{84,§}, S. Bilokin^{46,§}, G. Bonvicini^{166,§}, A. Bozek^{91,§}, M. Bračko^{140,105,§},
P. Branchini^{57,§}, N. Braun^{47,§}, R. A. Briere^{8,§}, T. E. Browder^{134,§}, L. Burmistrov^{73,§}, S. Bussino^{57,§}, L. Cao^{47,§}, G. Caria^{142,§}, G. Casarosa^{55,§}, C. Cecchi^{54,§}, D. Červenkov^{10,§}, M.-C. Chang^{22,§}, P. Chang^{90,§}, R. Cheaib^{142,§}, V. Chekelian^{81,§}, Y. Chen^{150,§}, B. G. Cheon^{28,§}, K. Chilikin^{75,§}, K. Cho^{68,§}, J. Choi^{14,§}, S.-K. Choi^{27,§} S. Choudhury^{34,§}, D. Cinabro^{166,§}, L. M. Cremaldi^{142,§}, D. Cuesta^{46,§}, S. Cunliffe^{16,§} N. Dash^{32,§}, E. de la Cruz Burelo^{80,§}, G. De Nardo^{52,§}, M. De Nuccio^{16,§}, G. De Pietro^{57,§}, A. De Yta Hernandez^{80,§}, B. Deschamps^{125,§}, M. Destefanis^{58,§}, S. Dey^{112,§}, F. Di Capua^{52,§}, S. Di Carlo^{73,§}, J. Dingfelder^{125,§}, Z. Doležal^{10,§},

New physics DNA

- What new physics could it be?
- Matter antimatter asymmetry → New sources of CP Violation
- <u>Quark and Lepton flavour & mass</u> hierarchy →extended gauge sector coupling to third generation (H±, W', Z') →restored L-R symmetry
- **Finite neutrino masses** \rightarrow LFV and LFUV.
- 19 free parameters \rightarrow <u>GUTs</u>, **leptoquarks**

	imental Sensitivity	Higgs Models (§17.2)	c SUSY	(§17.3)	dels (§17.6.1)	d flavour (§17.6.2)	(\$17.6.3)	ght (§17.6.4)	uarks (§18.2.1)	siteness (§17.7)
Observables	Exper	Multi-	generi	MFV	Z' mo	gauge	3-3-1	left-rig	leptog	compc
au tree decays:										-
$\mathcal{B}(\tau \to K\nu)/\mathcal{B}(\tau \to \pi\nu)$	***	**	×	×	×	×	×	*	***	
$\mathcal{B}(\tau \to K^* \nu) / \mathcal{B}(\tau \to \rho \nu)$	***	×	×	×	×	×	×	*	***	
$\tau \to \mu$ decays:										
$ au o \mu \gamma$	***	*	***	*	*	*	*	×	*	***
$ au o \mu \pi^0$	***	*	**	×	***	×	***	×	***	
$ au o \mu K_S$	***	*	*	×	*	×	*	×	***	
$ au o \mu ho^0$	***	×	**	×	***	×	***	×	***	
$ au o \mu K^{0*}$	***	×	*	×	*	×	*	×	***	
$\tau^- \to \mu^- \ell^- \ell^+$	**	**	*	×	***	***	***	×	*	***
$\tau^- \to \mu^- \mu^- e^+$	**	*	×	×	*	***	*	×	×	***

• τ LFV is an excellent example.

CP Violation

				miscover	·7)/8
Process	Observable	Theory	SY ^{S.} lin	it Dr. LHCh	0 V
$B \to J/\psi K_S$	ϕ_1	***	5-10	**	
$B \to \phi K_S$	ϕ_1	**	>50	**	*
$B \to \eta' K_S$	ϕ_1	**	>50	**	*
$B \rightarrow J/\psi \pi^0$	ϕ_1	***	>50	*	*
$B \to \rho^{\pm} \rho^0$	ϕ_2	***	_	*	*
$B \to \pi^0 \pi^0$	ϕ_2	**	>50	***	*
$B \to \pi^0 K_S$	$S_{\rm CP}$	**	>50	***	*

• Constrains penguin pollution (theory precision)

eeFACT Hong Kong 2018

Flavour Tagging

• Categories based on different signatures

Categories	$\varepsilon_{ m eff}(\%)$	$\Delta \varepsilon_{\rm eff}(\%)$
Electron	5.26	-0.05
IntermediateElectron	1.06	-0.02
Muon	5.55	-0.02
IntermediateMuon	0.17	-0.01
KinLepton	10.86	-0.07
IntermediateKinLepton	0.98	-0.04
Kaon	21.83	-1.72
KaonPion	15.12	-0.87
SlowPion	7.96	-0.23
FSC	13.11	-0.33
MaximumPstar	13.24	0.39
FastPion	2.58	-0.06
Lambda	1.98	0.36

- Belle II: 35% (varies with release)
 - few% less w/ beam bkg
- Belle (this algo): 32%
- Belle (old algo):29%

eeFACT Hong Kong 2018

Phillip URQUIJO

Leptonic and Semileptonic Decay

- 3-ways to measure |V_{CKM}| with leptonic and semileptonic decays
- **Leptonic**: decay constant from LQCD

$$\Gamma(B \to \ell_1 \ell_2) = \frac{M_B}{4\pi} |G|^2 f_B^2 \zeta_{12} \frac{\lambda_{12}^{1/2}}{M_B^2} \qquad G = \frac{G}{\sqrt{2}}$$

Exclusive semileptonic: form factor parameterisation with normalisation from LQCD or Light Cone Sum Rules

$$\frac{d\Gamma}{dq^2} = C_q |\eta_{\rm EW}|^2 \frac{G_F^2 |V_{qb}|^2}{(2\pi)^3} \frac{\lambda^{1/2}}{4M_B^3} \frac{\lambda_{12}^{1/2}}{q^2} \left\{ q^2 \beta_{12} \left[|H_+|^2 + |H_-|^2 + |H_0|^2 \right] + \zeta_{12} |H_s|^2 \right\}$$

Inclusive semileptonic: Heavy quark symmetry if you measure the full rate, described by heavy quark expansion $\Gamma(B \to X_c \ell \nu) = \frac{G_F^2 m_b^5}{192\pi^3} |V_{cb}|^2 [[1 + A_{ew}] A_{nonpert} A_{pert}]$

$$\frac{F}{2}V_{ub},$$

$$(m_{\nu_\ell} \to 0)$$

$$\lambda_{12} = (M_B^2 - m_1^2 - m_2^2)^2 - 4$$

$$\zeta_{12} = m_1^2 + m_2^2 - \frac{(m_1^2 - m_2^2)}{M_B^2}$$

$$\beta_{12} = 1 - \frac{m_1^2 + m_2^2}{q^2} - \frac{\lambda_{12}}{q^{2^2}}$$

Golden modes for Belle II

				Wery	[ab-1]
Process	Observable	Theory	SYS. limit	VS LHCb	vs Belle
$B \to \pi \ell \nu_l$	$ V_{ub} $	***	10-20	***	***
$B \to X_u \ell \nu_\ell$	$ V_{ub} $	**	2-10	***	**
$B \to \tau \nu$	Br.	***	>50(2)	***	***
$B \to \mu \nu$	Br.	***	>50(5)	***	***
$B \to D^{(*)} \ell \nu_{\ell}$	$ V_{cb} $	***	1-10	***	**
$B \to X_c \ell \nu_\ell$	$ V_{cb} $	***	1-5	***	**
$B \to D^{(*)} \tau \nu_{\tau}$	$R(D^{(*)})$	***	5-10	**	***
$B \to D^{(*)} \tau \nu_{\tau}$	P_{τ}	***	15 - 20	***	***
$B \to D^{**} \ell \nu_{\ell}$	Br.	*	-	**	***

eeFACT Hong Kong 2018

Phillip URQUIJO

eeFACT Hong Kong 2018

 $B \rightarrow K(*) \vee V$

Rate of $b \rightarrow s v v$ is a pure Z penguin (C₉), and only accessed at Belle II

Observables	Belle 0.71 ab^{-1}
$\overline{B(B^+ \to K^+ \nu \bar{\nu})}$	< 450%
$B(B^0 \to K^{*0} \nu \bar{\nu})$	< 180%
$F_L(B^0 \to K^{*0} \nu \bar{\nu})$	
$B(B^0 \to \nu \bar{\nu}) \times 10^6$	< 14
$B(B^+ \to K^+ \tau^+ \tau^-) \times 10^5$	< 32
$B(B^0 \to \tau^+ \tau^-) \times 10^5$	< 140

eeFACT Hong Kong 2018

τ Candidates at Belle II

eeFACT Hong Kong 2018

Phillip URQUIJO

Direct CP Violation

For CPV A₁ and A₂ need to have **different weak phases** Φ and different **CP invariant (e.g. strong) phases** δ . To measure Φ you need to know δ , and ratio of amplitudes e.g. in γ/Φ_3 measurements the relative strength of V_{ub} and V_{cb} processes and colour suppression.

eeFACT Hong Kong 2018

Φ_1 relies on $\Delta F=2$ (mixing+decay), but we can also use $\Delta F=1$ (direct) as a precise probe

Towards Phase 3 and the Physics Run

The VXD will be installed in Phase 3. Restart Belle II data taking in late February 2019.

PXD layer 1 ladders, Feb 2018

First PXD half-shell being tested at DESY, July 2018 eeFACT Hong Kong 2018 Phil

SVD +x half-shell, Jan 2018 KEK

SVD -x half-shell, July 2018, KEK

