

Semileptonic and leptonic D decays at Belle II

Alan Schwartz University of Cincinnati, USA

10th International Workshop on the CKM Unitarity Triangle

Heidelberg 18 September 2018

- overview
- leptonic decays
- semileptonic decays
- searches for new physics
- status

(Semi)leptonic decays at Belle II

Semileptonic/leptonic decays are ideal for an e⁺e⁻machine:

- Initial state is known, so signal decays can be identified via missing energy, missing "mass"
- Low backgrounds, high trigger efficiency, negligible trigger bias, excellent γ and π^0 reconstruction (and thus η , η' , ρ +, etc. reconstruction efficiency)
- Good kinematic resolution, many control samples to study systematics
- Absolute (not only relative) branching fractions can be measured

Channel	Belle	BaBar	Belle II (per year)
$B\bar{B}$	7.7×10^8	4.8×10^8	$1.1 imes 10^{10}$
$B_s^{(*)}\bar{B}_s^{(*)}$	$7.0 imes 10^6$	_	$6.0 imes 10^8$
$\Upsilon(1S)$	1.0×10^8		$1.8 imes 10^{11}$
$\Upsilon(2S)$:	1.7×10^8	$0.9 imes 10^7$	$7.0 imes10^{10}$
$\Upsilon(3S)$	1.0×10^7	$1.0 imes 10^8$	$3.7 imes 10^{10}$
$\Upsilon(5S)$	$3.6 imes 10^7$	—	$3.0 imes 10^9$
au au	1.0×10^9	0.6×10^9	1.0×10^{10}

Belle-II: $50 \times present = 4 \times 10^{10} BB pairs$ = $7.2 \times 10^{10} DX events$

A. J. Schwartz

Leptonic decays $D_{(s)}^+ \rightarrow \ell^+ \nu$

Amhis et al. (HFLAV), EPJC 77, 895 (2017) https://hflav.web.cern.ch/

$$igg| \Gamma(D_s^+\!
ightarrow\!\ell^+
u_\ell) \;\;=\;\; rac{G_F^2}{8\pi}\,|V_{cs}|^2\,f_{D_s}^2\,m_\ell^2\,m_{D_s}\,\left(1-rac{m_\ell^2}{m_{D_s}^2}
ight)^2$$

Two strategies:

- Take $|V_{cs}|$ or $|V_{cd}|$ from CKM unitarity, extract $f_{D(s)}$, compare to lattice QCD calculation
- Take $f_{D(s)}$ from lattice QCD, extract $|V_{cs}|$ or $|V_{cd}|$, compare to CKM unitarity

A. J. Schwartz

CKM 2018

Leptonic decays $D_{(s)}^+ \rightarrow \ell^+ \nu$

Amhis et al. (HFLAV), EPJC 77, 895 (2017) https://hflav.web.cern.ch/

$$igg| \Gamma(D_s^+\!
ightarrow\! \ell^+
u_\ell) \;\; = \;\; rac{G_F^2}{8\pi} \, |V_{cs}|^2 \, f_{D_s}^2 \, m_\ell^2 \, m_{D_s} \, \left(1 - rac{m_\ell^2}{m_{D_s}^2}
ight)^2$$

- Take $|V_{cs}|$ or $|V_{cd}|$ from CKM unitarity, extract $f_{D(s)}$, compare to lattice QCD calculation
- Take $f_{D(s)}$ from lattice QCD, extract $|V_{cs}|$ or $|V_{cd}|$, compare to CKM unitarity

Leptonic Decay $D_s^+ \rightarrow \mu^+ \nu$

Method: use energy/momentum conservation to search for rare $D^+ \rightarrow \ell^+ v$, $D^+ \rightarrow vv$, etc.

$e^+e^- \rightarrow D_{\text{tag}} X_{\text{frag}} D_{\text{signal}}$
X K (anti-p)

Tag side:	D^0	D^+	Λ_c^+
	$K^-\pi^+$	$K^-\pi^+\pi^+$	$pK^{-}\pi^{+}$
Decay mode:	$K^-\pi^+\pi^0$	$K^-\pi^+\pi^+\pi^0$	$pK^{-}\pi^{+}\pi^{0}$
	$K^-\pi^+\pi^+\pi^-$	$K^0_S \pi^+$	pK_S^0
	$K^-\pi^+\pi^+\pi^-\pi^0$	$K^0_S \pi^+ \pi^0$	$\Lambda \pi^+$
	$K^0_S \pi^+\pi^-$	$K_{S}^{0} \pi^{+} \pi^{+} \pi^{-}$	$\Lambda \pi^+ \pi^0$
	$K_{S}^{0}\pi^{+}\pi^{-}\pi^{0}$	$\tilde{K}^+ K^- \pi^+$	$\Lambda\pi^+\pi^+\pi^-$
	$K_S^0 \pi^+$	K_S^0	
$X_{\mathrm{frag}}:$	$K^0_S \pi^+ \pi^0$	$K^0_S \pi^0$	
	$K^0_S \pi^+ \pi^+ \pi^-$	$K^0_S \pi^+ \pi^-$	same as for
	K^+	$K_{S}^{0}\pi^{+}\pi^{-}\pi^{0}$	D^+ tag
	$K^+ \pi^0$	$K^+ \pi^-$	$+ \bar{p}$
	$K^+ \pi^+ \pi^-$	$K^+ \pi^- \pi^0$	
	$K^+ \pi^+ \pi^- \pi^0$	$K^+ \pi^- \pi^+ \pi^-$	

For D_{signal} require 1 lepton track $(D^+ \rightarrow \ell^+ \nu)$

A. J. Schwartz

Leptonic Decay $D_s^+ \rightarrow \mu^+ \nu$

Zupanc et al., JHEP 09 (2013) 139

$$e^+e^- \rightarrow D_{\text{tag}} X_{\text{frag}} K D_s^{*+} \rightarrow D_s^+ \gamma$$

$$\mu^+ \nu$$

- $P_{miss} = P_{e^+} + P_{e^-} P_{Dtag} P_K P_X P_{\gamma} P_{\mu}$
- $(M_{miss})^2 = (P_{miss})^2$ Require 1 charged track passing μ ID and pointing to IP
- Fit to $(M_{miss})^2$ $[D_{tag} X_{frag} K \mu^+ \gamma missing mass squared]$

A. J. Schwartz

Leptonic Decay $D_s^+ \rightarrow \tau^+ \nu$

Zupanc et al., JHEP 09 (2013) 139

$$e^{+}e^{-} \rightarrow D_{\text{tag}} X_{\text{frag}} K D_{s}^{*+} \rightarrow D_{s}^{+} \gamma$$

$$\tau^{+} \nu$$

$$e^{+} \nu \nu, \ \mu^{+} \nu \nu, \ \pi^{+} \nu$$

•
$$P_{miss} = P_{e+} + P_{e-} - P_{Dtag} - P_{K} - P_{X} - P_{\gamma} - P_{track}$$

- $(M_{miss})^2 = (P_{miss})^2$
- Require $|p_{miss}| > 1.2 \text{ GeV/}c^2$ in lab frame
- For π mode require $0 < (M_{miss})^2 < 0.6 (GeV/c^2)^2$
- For e/μ modes require $(M_{miss})^2 > 0.3$ $(GeV/c^2)^2$
- Obtain signal yield from fitting excess *E*_{ECL} distribution

⇒ $\Delta |V_{cs}| = 0.003$ (stat), below theory error (LQCD) of 0.005 $\Delta f_{Ds} = 0.6$ (stat), well below theory error (FLAG16) error of 1.3

A. J. Schwartz

CKM 2018

Leptonic Decay $D^+ \rightarrow \mu^+ \nu$ (Belle II MC)

$$e^+e^- \rightarrow D_{\mathrm{tag}} X_{\mathrm{frag}} \mathbf{D}^{*+} \rightarrow \mathbf{D}^+ \pi^0$$

 $\Rightarrow \Delta f_D |V_{cd}| = 0.65 \text{ MeV}$ (statistical error, which dominates), well below that of CLEOc (1.2) and BESIII (1.9)

CKM 2018

Require 1 charged track passing μ ID and

pointing to IP

Semileptonic Decays

$$D \rightarrow (K,\pi) \,\ell^+ \nu: \qquad \boxed{\frac{d\Gamma}{dq^2} = \frac{G_F^2 \, p_h^3}{24\pi^3} \left| V_{cs,cd} \right|^2 \left| f_+(q^2) \right|^2}$$

⇒ Take $f_+(q^2)$ form factor from theory, determine $|V_{cs}|$ or $|V_{cd}|$

Simple pole:
$$f_+(q^2) = \frac{f_+(0)}{(1-q^2/m_{\rm pole}^2)}$$

A. J. Schwartz

$$\label{eq:model} \textit{Modified pole model:} \qquad f_+(q^2) \;\; = \;\; \frac{f_+(0)}{(1-q^2/m_{\rm pole}^2)(1-\alpha_p q^2/m_{\rm pole}^2)}$$

$$\begin{aligned} z \text{ expansion:} \qquad t_{\pm} &= (m_D \pm m_P)^2 \qquad t_0 = t_+ (1 - \sqrt{1 - t_-/t_+}) \\ \\ z(q^2, t_0) &= \frac{\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0}} \\ \\ f_+(q^2) &= \frac{1}{P(q^2)\phi(q^2, t_0)} \sum_{k=0}^{\infty} a_k z^k \\ \\ a_1/a_0 &\equiv r_1 \qquad a_2/a_0 \equiv r_2 \end{aligned}$$

 $f_{+}^{K}(0)|V_{cs}| = 0.7226 \pm 0.0022 \pm 0.0026$ $f_{+}^{\pi}(0)|V_{cd}| = 0.1426 \pm 0.0017 \pm 0.0008$

CKM 2018

Amhis et al. (HFLAV), EPJC 77, 895 (2017) https://hflav.web.cern.ch/

Amhis et al. (HFLAV), EPJC 77, 895 (2017) https://hflav.web.cern.ch/

 $f_{+}^{K}(0)|V_{cs}| = 0.7226 \pm 0.0022 \pm 0.0026$ $D \rightarrow (K, \pi) \ell^+ \nu$: $f^{\pi}_{+}(0)|V_{cd}| = 0.1426 \pm 0.0017 \pm 0.0008$ $f^{K_{+}}(0) = 0.747 \pm 0.019$ Using recent LQCD results: Aoki et al. (Flavor Lattice Averaging Group), EPJC 77, 112 (2017) [arXiv:1607.00299] $f^{\pi_{+}(0)} = 0.666 \pm 0.029$ gives: HFLAV HFLAV Summer 2016 Summer 2016 $D_s \to \ell \nu_{\ell}$ $1.006 \pm 0.018 \pm 0.005$ $D \rightarrow \ell \nu_{\ell}$ $0.2164 \pm 0.0050 \pm 0.0015$ $D \to K \ell \nu_{\ell}$ $0.967 \pm 0.005 \pm 0.025$ $D \to \pi \ell \nu_{\ell}$ $0.2141 \pm 0.0029 \pm 0.0093$ Average Average Recent LQCD: 0.997 ± 0.017 0.216 ± 0.005 H $D_{\rm S} \rightarrow \ell \nu_{
ho} + D \rightarrow K \ell \nu_{
ho}$ $D \to (\pi) \ell \nu_{\rho}$ Riggio et al., EPJC 78 (2018) 501 [1706.03657]: 0.230 ± 0.011 νN $0.94^{+0.32}_{-0.26}\pm 0.13$ $W \rightarrow c\overline{s}$ $|V_{cs}| = 0.970 \pm 0.033$ $|V_{cd}| = 0.2341 \pm 0.0074$ $0.22529\substack{+0.00041\\-0.00032}$ $0.973394^{+0.000074}_{-0.000096}$ -Indirect Indirect 0.85 0.9 0.95 1 1.05 1.1 1.15 0.2 0.25 0.3 0.15 $|V_{cs}|$ $|V_{cd}|$

A. J. Schwartz

CKM 2018

Semileptonic Decays

- define $P_{D^*} = P_{e^+} + P_{e^-} P_{Dtag} P_X$
- require $(P_{D^*})^2 = (M_{D^*})^2$
- require $(P_{D^*} P_{\pi slow})^2 = (M_{D0})^2$
- Identify (K or π) and (μ or e), and require $|(P_{D^*} - P_{\pi \text{ slow}} - P_{(K,\pi)} - P_{(\mu,e)})^2| < 0.05 (GeV/c^2)^2$

11

Semileptonic Decays (Belle II MC)

$D \rightarrow (K, \pi) \ell^+ \nu$:

Belle II 1.0 ab⁻¹:

Belle II yields (50 ab⁻¹): $D^0 \rightarrow K^+ \ell \nu$ 455000 $D^0 \rightarrow \pi^+ \ell \nu = 41100$ 53% purity: $D^0 \rightarrow \pi^+ e^- v$. 698000

- Fully reconstruct a D^+ , D^0 on tag side Define $P_{D^*} = P_{e^+} + P_{e^-} - P_{Dtag} - P_X$
- require $(P_{D^*})^2 = (M_{D^*})^2$
- Identify (K or π) and (μ or e)
- calculate M_{miss}^2 = $P_{miss}^{2} = (P_{D^{\star}} - P_{\pi slow} - P_{(K,\pi)} - P_{(\mu,e)})^{2}$ or $U_{miss} = E_{miss} - |\boldsymbol{p}_{miss}|$

Tag side:	D^0	D^+
	$K^{-}\pi^{+}$	$K^-\pi^+\pi^+$
	$K^-\pi^+\pi^0$	$K^-\pi^+\pi^+\pi^0$
Final	$K^-\pi^+\pi^+\pi^-$	$K^0_S \pi^+$
state:	$K^-\pi^+\pi^+\pi^-\pi^0$	$K_{S}^{0}\pi^{+}\pi^{0}$
	$K_{S}^{0} \pi^{+} \pi^{-}$	$K_{S}^{0} \pi^{+} \pi^{+} \pi^{-}$
	$K_{S}^{0}\pi^{+}\pi^{-}\pi^{0}$	$\ddot{K}^+ K^- \pi^+$
	π^+	none
v .	-+_0	π^0
$\mathbf{\Lambda}_{\mathrm{frag}}$:	$\pi^+\pi^-$	$\pi^+\pi^-$
	π ' π ' π	$\pi^+\pi^-\pi^0$

$rac{G_{F}^{2}\,p_{h}^{3}}{24\pi^{3}}\left|V_{cs,cd} ight|^{2}\left|f_{+}(q^{2}) ight|^{2}$ $d\Gamma$

A. J. Schwartz

CKM 2018

A. J. Schwartz

CKM 2018

Detector is close (SVD, PXD to be installed this winter)

Completion of first SVD clam-shell (Jan 2018)

Final focus quadrupoles being prepared for insertion (Jan 2018)

PXD L1 ladders ready for half-shell assembly

Detector is superior to Belle: better vertexing, better particle ID, full reconstruction (neural net) on tag side is greatly improved over Belle/BaBar.

14

Event display, cosmic ray run Semileptonic/leptonic D decays at Belle II

A. J. Schwartz

Belle II charm signals: 250 pb⁻¹, no VTX

CKM 2018

- Belle II is now (almost) fully constructed and installed. The entire detector except for the VTX is now undergoing commissioning (with beam from April July)
- VTX detector (SVD + pixels) will be installed in the winter, physics run with full Belle II detector to begin in 2019
- Leptonic + semileptonic decays should be measured with ~50x larger statistics; as errors are dominated by statistics, precision on f_{Ds} , $|V_{cd}|$, $|V_{cs}|$ should improve by ~7. Will measure f_D and $|V_{cd}|$ with $D^+ \rightarrow \mu^+ \nu$ decays. Most measurements better/competitive with BESIII, precision similar to that of LQCD.

A. J. Schwartz

Extra

Extra Slides

A. J. Schwartz

CKM 2018

The Belle II Detector

KL and muon detector

Resistive Plate Counter (barrel outer layers) Scintillator + WLSF + MPPC (end-caps, inner 2 barrel layers)

EM Calorimeter

CsI(TI), waveform sampling electronics

electrons (7 GeV)

Vertex Detector

2 layers Si Pixels (DEPFET) + 4 layers Si double sided strip DSSD

Central Drift Chamber Smaller cell size, long lever arm

Particle Identification

Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (forward)

positrons (4 GeV)

Belle II TDR, arXiv:1011.0352

A. J. Schwartz

S. Fajfer et al., PRD 91, 094009 (2015)

$$\mathcal{B}(D_s o \ell
u_\ell) = au_{Ds} rac{m_{Ds}}{8\pi} f_{Ds}^2 \Big(1 - rac{m_\ell^2}{m_{Ds}^2} \Big)^2 G_F^2 \ imes (1 + \delta_{em}^{(\ell)}) |V_{cs}|^2 m_\ell^2 \Big| 1 - c_P^{(\ell)} rac{m_{Ds}^2}{(m_c + m_s) m_\ell} \Big|^2$$

68% CL (dark) and 95% CL (light) allowed regions:

A. J. Schwartz

CKM 2018