

Belle II prospects for the mixing and CPV in B decays

B. Oberhof*

*LNF-INFN, Italy
on behalf of the Belle II Collaboration

10th International Workshop on the CKM Unitarity Triangle

Heidelberg, Germany September 19th, 2018

Unitarity Triangle from B Decays

- Quark interactions described by the CKM unitary matrix V_{CKM}
- Off-diagonal elements of V[†]V=I can be represented by triangles in complex plane
 - Sides ~ Amplitudes ~ Branching fractions
 - Angles ~ Phases ~ CPV
- Most common triangle from $\Sigma_i V_{id} V_{ib}^*$, i=u,c,t (be aware that $\phi_1 = \beta$, $\phi_2 = \alpha$, $\phi_3 = \gamma$!)
- All angles can be accessed at B-factories → BaBar (SLAC) and Belle (KEK)
 collected together about 1.5 ab⁻¹ → precise determination of unitarity triangle

Overview of SuperKEKB

New generation B-factory, upgrade of KEKB

SuperKEKB is working!

Belle → Belle II

- Various upgrades in order to improve performance in new conditions:
 - Much higher beam-background environment of SuperKEKB
 - Reduced CM boost
- Highlights:
 - Vertex detector:
 - 2 layers of pixels
 - 4 DSSD layers with extended coverage
 - PID:
 - new TOP + ARICH (FWD)
 - Drift chamber:
 - smaller cell size, longer lever arm
 - K_L & muons:
 - Inner (barrel) and FWD RPCs replaced with scintillators

Belle II works!

- Belle II has recorded its first collisions on April 26th and has continued taking data until July 17th with a commissioning vertex detector called BEAST-II in order to study beam-backgrounds close to the IP (Phase 2)
- 2 PXD and 4 DSSD ladders where the highest background is expected
- FANGS FE-I4 based hybrid pixel to study Synchrotron Radiation
- CLAWS for trickle injection bkg
- PLUME double-sided high granularity
 MIMOSA pixels

ϕ_1 and ϕ_2 at B-factories

- BB mixing and decay amplitudes interfere → time-dependent CP asymmetry
- The BB are produced in an entangled state, the flavor of the first decaying B (tag) defines the flavor of the other B (signal) at that time
- Need to measure Δt between tag B and signal B, hence a difference in Δz
- $Y(4S) \rightarrow B\overline{B}$ pairs at rest in the CM frame \rightarrow asymmetric beam energies

Systematics on φ₁ and φ₂

- Systematics are mainly limited by:
 - the resolution of the tagging B vertex fit and hence on Δt → inner pixel sensors high resolution in a noisy environment

 the proper identification of the flavor of the non-signal B meson: Belle II uses a new inclusive flavor tagger technique which results in higher tagging efficiency

~35.8%_{Belle II} vs ~30.0%_{Belle}

The Belle II Physics Book: https://arxiv.org/abs/1808.10567

$sin(2\phi_1)$ in $b \rightarrow c\overline{c}s$

- Tree dominated modes, golden channel B \rightarrow J/ ψ K $_{\rm S}$
 - Theoretically clean process, $S = -\xi_f \sin(2\phi_1)$, $C \sim 0$
 - Clean experimental signature: 4 tracks
- Recent theoretical improvements in the calculation of penguin pollution

 $S \simeq \sin{(2\beta)}$

Worst case scenario, same systematics as Belle

Belle (1 ab ⁻¹) PRL 108 171802							
				Belle (.	1 ab^{-1}	PR	L 108 171802
Sample	Quantity	Value	Stat. $(\times 10^{-3})$	Syst.	$(1) (\times 10^{-3})$	Syst. ($(2) (\times 10^{-3})$
				Red.	Non-red.	Red.	Non-red.
$B \to J/\psi K_S$	\mathcal{S}	+0.67	29	-	13	-	-
	$\mathcal{A} \equiv -\mathcal{C}$	-0.015	21	-	+45, -23	-	-
$b \to c\bar{c}s$	\mathcal{S}	+0.667	23	-	12	-	-
	$A \equiv -C$	+0.006	16	-	12	-	-
			В	selle II ((50 ab^{-1})		
$B \to J/\psi K_S$	\mathcal{S}	-	3.5	1.2	8.3	1.2	4.4
	${\cal A} \equiv -{\cal C}$	-	2.5	0.7	+43, -22	0.7	+42, -11
$b \to c \bar{c} s$	\mathcal{S}	-	2.7	2.6	7	2.6	3.6
	$\mathcal{A} \equiv -\mathcal{C}$	-	1.9	1.4	10.6	1.4	8.7

With expected improvement due to better vertexing

$sin(2\phi_1)$ in $b \rightarrow q\overline{q}s$: $B^0 \rightarrow \phi K^0$

• Loop process, same weak phase as b $\rightarrow c\overline{c}s$

Also sensitive to new physics

Δt resolution

Channel	Δt resolution (ps)
$\phi(K^+K^-)K_S^0(\pi^+\pi^-)$	0.75
$\phi(K^+K^-)K^0_S(\pi^0\pi^0)$	0.77
$\phi(\pi^+\pi^-\pi^0)K_S^0(\pi^+\pi^-)$	0.78

Expected sensitivity with 50 ab -1

Channel	$\sigma(S)$	$\sigma(C)$
$\overline{\phi(K^+K^-)K^0_S(\pi^+\pi^-)}$	0.025	0.017
$\phi(K^+K^-)K_S^0(\pi^0\pi^0)$	0.042	0.030
$\phi(\pi^+\pi^-\pi^0)K^0_S(\pi^+\pi^-)$	0.048	0.036
$K_S^0(\pi^+\pi^-)$ modes	0.019	0.014
$K_S^0(\pi^+\pi^-) + K_L^0(\pi^+\pi^-)$ modes	0.015	0.011

Belle measurement: $S_{\varphi K} = 0.9_{-0.19}^{+0.9}$

$sin(2\phi_1)$ in $b \rightarrow q\overline{q}s$: $B^0 \rightarrow \eta' K^0$

- Main issue for $B^0 \to \eta' K^0$, where $\eta' \to \eta \pi^+ \pi^-$ is π^0 and η^0 reconstruction
- Mis-reconstruction leads to signal cross-feed
- $B^0 \rightarrow \eta' K^0$ could be already systematically limited at L ~ O(10) ab⁻¹

Δt resolution

Channel	True	SxF	All
$\eta'(\eta_{\gamma\gamma}\pi^{\pm})K_S^{(\pm)}$	1.22~ps	2.87~ps	1.45~ps
$\eta'(\eta_{3\pi}\pi^{\pm})K_S^{(\pm)}$	1.17~ps	2.36~ps	1.50~ps

Expected sensitivity with 50 ab⁻¹

Channel	$\sigma(S)$	$\sigma(C)$	
$\eta'(\eta_{\gamma\gamma}\pi^\pm)K_S^\pm$	0.019	0.013	
$\eta'(\eta_{3\pi}\pi^{\pm})K_S^{\pm}$	0.035	0.025	
K_S^0 modes	0.009	0.007	
K_L^0 modes	0.025	0.016	
$K_S^0 + K_L^0$ modes	0.0085	0.0063	
Syst. (10^{-2})	1.8 (1.3)	-	
Syst. Case 1 (Case 2)			

Belle measurement: $S_{\eta'K} = +0.68 \pm 0.07 \pm 0.03$

$sin(2\phi_2)$: isospin analysis in B \rightarrow hh

- $sin(2\phi_2)$ can be extracted from time-dependent analysis of B $\to \pi\pi$, $\rho\rho$, $\pi\rho$
- Tree and penguin contribution are comparable but additional weak and strong phases π^+

- S = $\sin(2\phi_{2, eff})$, $\phi_{2, eff} = \phi_2 + \delta\phi_{peng}$
- Disentangle the tree contribution and extract δφ by isospin analysis

$$A^{(i,j)} \equiv \mathcal{A}(B^{i+j} \to h^i h^j) \ (h = \pi, \rho \ / \ i, j = \pm, 0)$$
$$A^{+-} / \sqrt{2} + A^{00} = A^{+0}$$
$$\bar{A}^{+-} / \sqrt{2} + \bar{A}^{00} = \bar{A}^{+0}$$
$$|A^{+0}| = |\bar{A}^{+0}|$$

M. Gronau and D. London, PRL 65 3381 (1990)

$\sin(2\phi_2)$: B $\rightarrow \pi\pi$

- Up to date $S_{\pi^0\pi^0}$ has never been measured \to eightfold ambiguity on ϕ_2
- We need the decay vertex, experimentally:
 - $\bullet \ \ \mathsf{B}^{\scriptscriptstyle 0}_{\ \mathsf{sig}} \to \pi^{\scriptscriptstyle 0}_{\ \ \mathsf{\gamma}\mathsf{\gamma}} \ (\to \mathsf{\gamma}\mathsf{\gamma}) \ \pi^{\scriptscriptstyle 0}_{\ \ \mathsf{\gamma}\mathsf{\gamma}} \ (\to \mathsf{\gamma}\mathsf{\gamma})$
 - $\bullet \ \ B^0_{sig} \to \pi^0_{dal} \ (\to e^+e^-\gamma) \ \pi^0_{vv} \ (\to \gamma\gamma)$
 - $B^0_{sig} \rightarrow \pi^0_{\gamma^*\gamma} (\rightarrow \gamma^* (\rightarrow e^+e^-) \gamma) \pi^0_{\gamma\gamma} (\rightarrow \gamma\gamma)$
- Photon conversion in the inner detector:
 - 3% of $B^0 \to \pi^0 \pi^0$ events
 - ~ 5% including π⁰ Dalitz decay
- Reconstruction efficiency is crucial!

	Value	Belle $@0.8 \text{ ab}^{-1}$	$Belle2 @ 50 ab^{-1}$
$\mathcal{B}_{\pi^{+}\pi^{-}}^{-}$ [10 ⁻⁶]	5.04	$\pm 0.21 \pm 0.18$ [2]	$\pm 0.03 \pm 0.08$
$\mathcal{B}_{\pi^0\pi^0}^{7}$ [10 ⁻⁶]	1.31	$\pm 0.19 \pm 0.18$ [1]	$\pm 0.04 \pm 0.04$
$\mathcal{B}_{\pi^{+}\pi^{0}}^{\pi^{+}\pi^{0}}$ [10 ⁻⁶]	5.86	$\pm 0.26 \pm 0.38$ [2]	$\pm 0.03 \pm 0.09$
${}^{n}C_{\pi^{+}\pi^{-}}^{n}$	-0.33	$\pm 0.06 \pm 0.03$ [3]	$\pm 0.01 \pm 0.03$
$S_{\pi^+\pi^-}^{^{\prime\prime}}$	-0.64	$\pm 0.08 \pm 0.03$ [3]	$\pm 0.01 \pm 0.01$
$\hat{C}_{\pi^0\pi^0}$	-0.14	$\pm 0.36 \pm 0.12$ [1]	$\pm 0.03 \pm 0.01$
$S_{\pi^0\pi^0}$	-	_	$\pm 0.29 \pm 0.03$

[3]: PRD 88(9) 092003

$\sin(2\phi_2)$: B

		Belle	Belle II
	Value	Belle @ 0.8 ab^{-1}	$Belle2 @ 50 ab^{-1}$
$\overline{f_{L,\rho}^+}_{\rho}^-$	0.988	$\pm 0.012 \pm 0.023$ [1]	$\pm 0.002 \pm 0.003$
$f_{L,\rho}^{\gamma,\rho}$	0.21	$\pm 0.20 \pm 0.15$ [2]	$\pm 0.03 \pm 0.02$
\mathcal{B}_{0}^{+} [10 ⁻⁶]	28.3	$\pm 1.5 \pm 1.5$ [1]	$\pm 0.19 \pm 0.4$
\mathcal{B}_{000}^{ρ} [10 ⁻⁶]	1.02	$\pm 0.30 \pm 0.15$ [2]	$\pm 0.04 \pm 0.02$
$C_{a^+a^-}$	0.00	$\pm 0.10 \pm 0.06$ [1]	$\pm 0.01 \pm 0.01$
$S_{\rho+\rho}^{\rho+\rho}$	-0.13	$\pm 0.15 \pm 0.05$ [1]	$\pm 0.02 \pm 0.01$
	Value	Belle @ 0.08 ab^{-1}	$Belle2 @ 50 ab^{-1}$
$f_{L,\rho}^{+\rho^0}$	0.95	$\pm 0.11 \pm 0.02$ [3]	$\pm 0.004 \pm 0.003$
$\mathcal{B}_{\rho^{+}\rho^{0}}^{2,\rho^{-}\rho^{0}}$ [10 ⁻⁶]	31.7	$\pm 7.1 \pm 5.3$ [3]	$\pm 0.3 \pm 0.5$
	Value	$BaBar @ 0.5 ab^{-1}$	$Belle2 @ 50 ab^{-1}$
$C_{\rho^0\rho^0}$	0.2	$\pm 0.8 \pm 0.3$ [4]	$\pm 0.08 \pm 0.01$
$S_{\rho^0\rho^0}^{\rho^0}$	0.3	$\pm 0.7 \pm 0.2$ [4]	$\pm 0.07 \pm 0.01$

Belle II expectation: $\Delta \phi_{2,pp} \sim 0.7^{\circ}$

Combined: $\Delta \phi_2 \sim 0.6^{\circ}$

^[2] Phys. Rev. Lett., 91, 221801 (2003) [3] Phys. Rev. D93, 032010 (2016) [4] Add Phys. Rev. D89, n.11, 119903 (2014)

Measurement of ϕ_3 with $B \rightarrow D^0$ K

- ϕ_3 is the phase between b \rightarrow u and b \rightarrow c
- The best methods to measure ϕ_3 are based on the interference between $b\to c\overline{u}s$ and $b\to u\overline{c}s$ amplitudes with $D^0/\overline{D}{}^0$ decaying to same final state

- Theoretically very clean, ambiguity on ϕ_3 is less than 1%
- Experimentally very challenging: CKM and color suppression
- Belle II technique: Dalitz-plot analysis of self-conjugate D decays (GGSZ)
- Different strong phases → have to be measured at charm factory (BES)

Measurement of ϕ_3 with $B^{\pm} \rightarrow D^0 K^{\pm}$

• First sensitivity study of Belle II uses GGSZ analysis for $B^{\scriptscriptstyle \pm} \to \left(K_{_S} \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle -} \right)_D K^{\scriptscriptstyle \pm}$

Belle II sensitivity expectation for

$$B^{\pm} \rightarrow (K_s \pi^+ \pi^-)_D K^{\pm}$$
 with 50 ab⁻¹: $\Delta \phi_3 \sim 3^{\circ}$

• Current measurement from B-factories and LHC: Belle: $\varphi_3 = (78^{+15}_{-16})^\circ$ LHCb: $\varphi_3 = (76.8^{+5.1}_{-5.7})^\circ$

- Belle measurement used other D decay modes (ADS, GLW techniques)
- Best estimate for Belle II combines the different techniques
- Fundamental assumption: BES III will have collected ~10 fb⁻¹ at the ψ(3770)

Belle II sensitivity expectation with 50 ab⁻¹: $\Delta \phi_3 \sim 1.6^{\circ}$

Current Schedule

- Up to date Belle II has recorded ~500 pb⁻¹ with partial (Phase 2) detector
- Commissioning has ended July 17th, we are now moving towards installation of the vertex detector in fall!
- Due to technical difficulties in the assembly, the second layer of the pixel detector will not be installed until 2020
- Physics run with increasing luminosity will start in February 2019!

Pictorial Outlook

Conclusions

- Belle and BaBar have been very successful in testing the CKM paradigm
- Belle II and SuperKEKB represent a major upgrade B-factory
- Huge dataset along with improved detector performance will allow

to test CKM mechanism at 1% level

- $sin(2\phi_1)$: precision better than 1% using $c\overline{c}s$ modes
- $\sin(2\phi_2)$: new inputs for isospin analysis, expected sensitivity $\delta\phi_2 \sim 1^\circ$
- ϕ_3 : from B \rightarrow DK decays $\delta\phi_3$ = 1.6° at 50 ab⁻¹

First Belle II data!

Expected precision on |V_{ub}|
 from exclusive (inc.) semi-leptonic measurements around 1.3% (3%)

..the fun has just started!

Thanks for your attention!