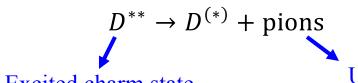

Improved study of $\overline{B} \to D^{(*)} \tau \overline{\nu}$ with vertexing at Belle II

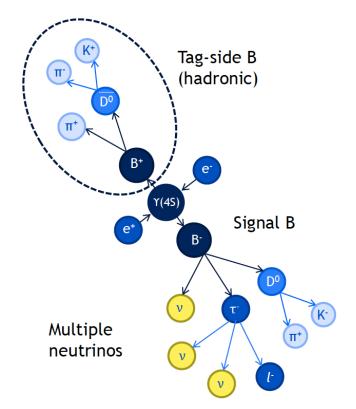
Abi SofferTel Aviv University


On behalf of the Belle II Collaboration

$\bar{B} \to D^{(*)} \tau \bar{\nu}$ introduction

- Largest cross section for τ production in B decays
- Sensitive to new physics that couples more strongly to heavy fermions (e.g., charged Higgs)

- Important physics at LHCb and Belle II
- In addition, $R(D^{(*)}) \equiv \frac{Br(B \to D^{(*)}\tau\nu)}{Br(B \to D^{(*)}\ell\nu)}$ are currently 3.8 σ from SM prediction
- An important background is $\bar{B} \to D^{**} \ell \bar{\nu}$



Excited charm state

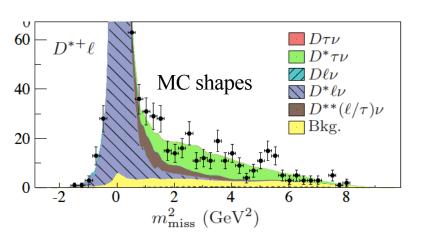
Unobserved

• Most of this talk focuses on addressing the $\bar{B} \to D^{**} \ell \bar{\nu}$ background at Belle II using precise vertexing.

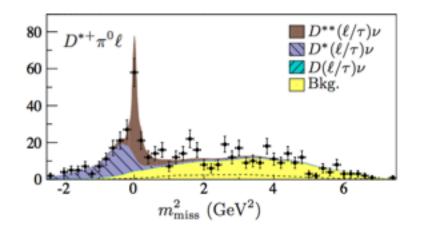
Hadronic recoil-B reconstruction in $e^+e^- \rightarrow \bar{B}B$ events

- Reconstructing the event in full is very useful in missing energy studies to constrain the event and reduce backgrounds
- Multiple channels for tag-side B are used to increase efficiency
- Hadronic full reconstruction expected to be used for:
 - Semi-leptonic and semi-tauonic modes for R(D^(*))
 - B $\rightarrow \tau \nu$ decays
- These studies will use Belle II's new algorithm

Sophie Hollitt


ICHEP 2018: R(D(*)) and missing energy at Belle II

$$m_{miss}^2 = \left(p_{ee} - p_{tag} - p_D - p_\ell\right)^2$$


is the main signal-background discriminator

m_{miss}^2 and $\bar{B} \to D^{**} \ell \bar{\nu}$ background

E.g., 1 mode in BABAR analysis[1]:

Simultaneous fit to $\bar{B} \to D^{**} \ell \bar{\nu} + \pi^0$ candidate:

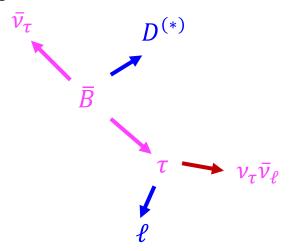
- \rightarrow D** systematic (%)
- Relative efficiencies
- $Br(D^{**} \to D^{(*)}\pi^0/\pi^{\pm})$
- $Br(D^{**} \rightarrow D^{(*)}\pi\pi)$
- $Br(\bar{B} \to D^{**}\ell\bar{\nu})$
- $Br(\bar{B} \to D^{**}\tau\bar{\nu})$

- R(D) $R(D^*)$
- 5.0 2.0
- 0.70.5
- 2 1 2.6
- 0.8 0.3
- 1.8 1.7

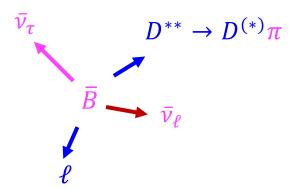
- $\sim 1.3 3.3\%$ error in Belle [2] & LHCb [3] analyses with $\tau \to \ell \nu \bar{\nu}$
- At Belle II, 2% will already be a large error with 5 ab^{-1}

- [1] arXiv:1205.5442, arXiv:1303.0571
- [2] arXiv:1507.03233, arXiv:1607.07923
- [3] arXiv:1506.08614

What we know about D^{**} states

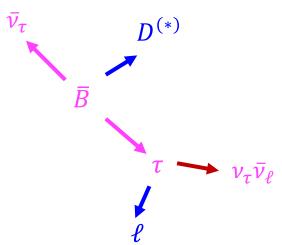

State	~Width (MeV)	J^P	Seen/allowed decays
$D_0^*(2400)$	270	0+	$D\pi$, $D\eta$
$D_1(2420)$	27	1+	$D^*\pi$, $D\pi\pi$, $D^*\pi\pi$
$D_1'(2430)$	380	1+	$D^*\pi$, $D^*\eta$, $D^{(*)}\pi\pi$
$D_2^*(2460)$	50	2+	$D^{(*)}\pi, D^{(*)}\pi\pi, D^{(*)}\eta$
D(2550)	130	0-	$D^*\pi$
D(2600)	90	??	$D^{(*)}\pi$
$D^*(2640)$	< 15	??	$D^*\pi\pi$
D(2750)	65	??	$D^{(*)}\pi$

- Exclusive $\bar{B} \to D^{**} \ell \bar{\nu}$ decays observed only for the 4 lightest resonances
- Additional resonances?
- Nonresonant $\bar{B} \to D^{**} \ell \bar{\nu}$ decays
- Additional $D^{(*)}(n\pi)$ decays?


Assumptions affect the m_{miss}^2 shape in the fit

Distance between B vertex & lepton

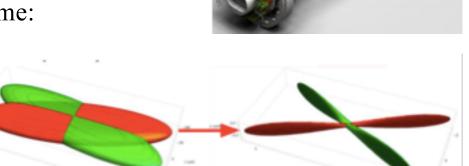
Signal:



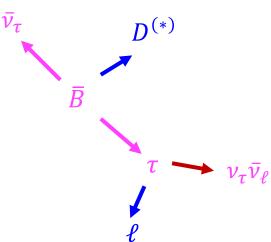
Background:

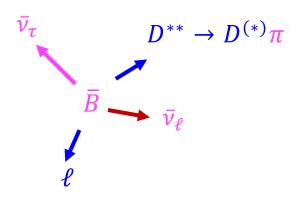


Distance between B vertex & lepton


Signal:

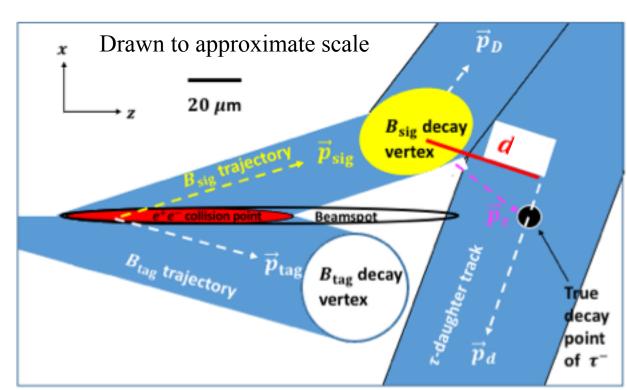
Background:


- Belle II spatial resolution is is twice as good
 - as @ BABAR/Belle.
- Pixels @ r = 14mm:
- Nanobeam collision scheme:


- Average τ flies only 45 μ m, less than the Belle II spatial resolution,
- S-B separation weaker than for m_{miss}^2 etc.
- But exploit model independence to check $\bar{B} \to D^{**} \ell \bar{\nu}$ yield in the analysis fit

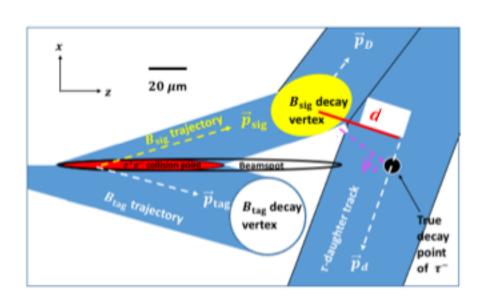
Distance between B vertex & lepton

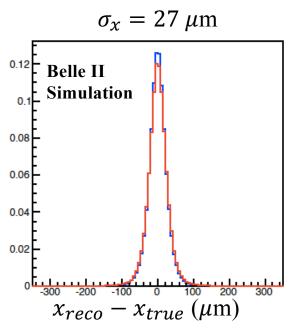
Signal:

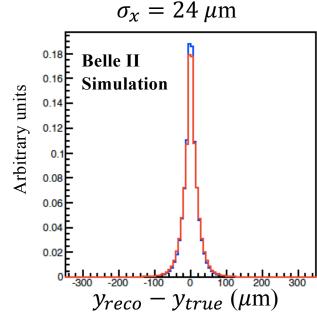


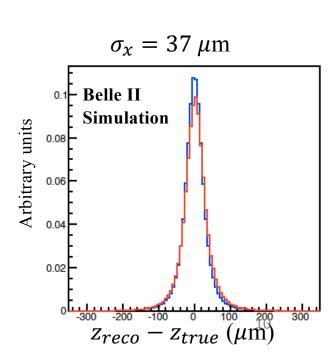
Background:

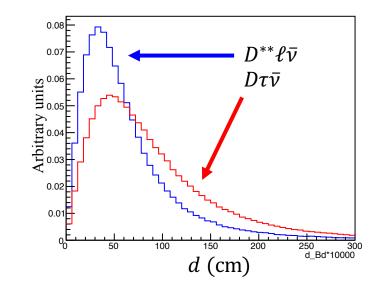
Exploit:

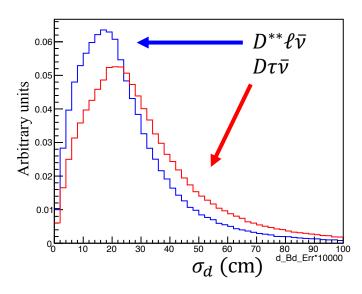

- Reconstruction of recoil B
- Very small beamspot
- Detector spatial resolution


Study with Belle II GEANT4 simulation

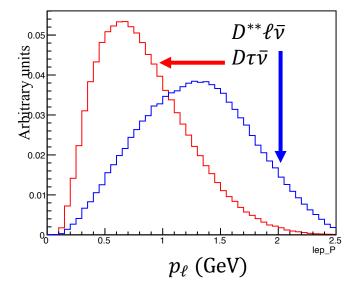

- Not a complete analysis
- Studies only the separation between signal and $\bar{B} \to D^{**} \ell \bar{\nu}$
- Study only $B^- \to D^0 \tau^- \bar{\nu}$ (signal) & $B^- \to D^{**0} \ell^- \bar{\nu}$ (background) $\downarrow K^- \pi^+$
- Assume correct tag-B and signal-B reconstruction
 - Misreconstruction background is already handled with other analysis variables
- Results reflect a current snapshot of the reconstruction & analysis software

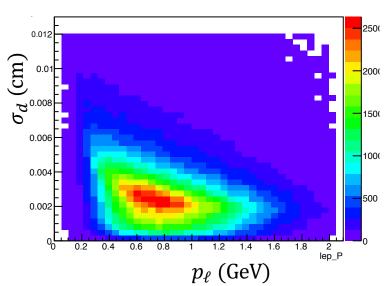

Signal-B position resolution



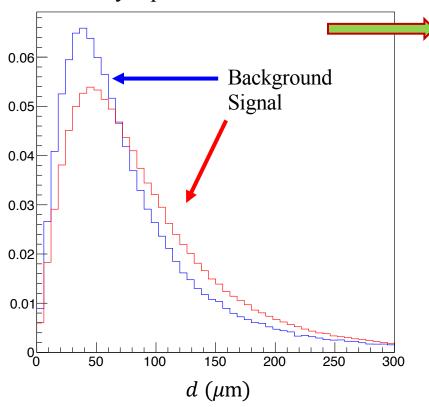


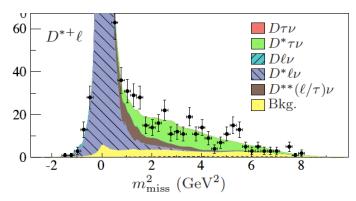
The distance d in $\tau \to \ell \nu \bar{\nu}$


S-B separation is partly due to larger signal σ_d ,



which is due mostly to the softer lepton.

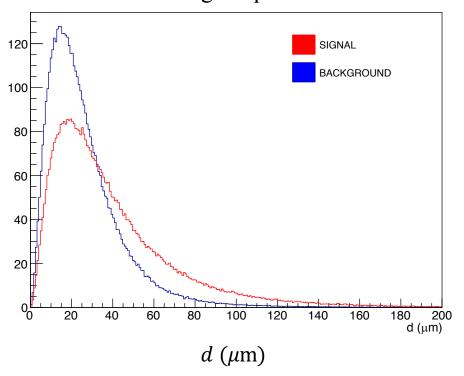

But p_{ℓ} is already among the analysis kinematic variables, so it isn't new.

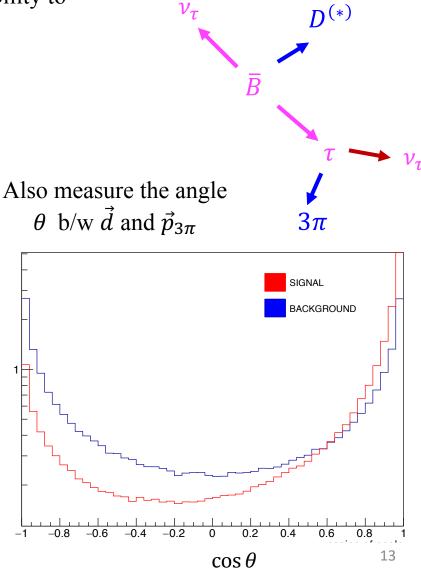


The distance d in $\tau \to \ell \nu \bar{\nu}$

After reweighting background events by lepton momentum:

- The S-B separation is small
- But sufficient for verifying that the kinematic-variable fit gives the correct fraction of non- τ events.


• Approximating signal and background yields from the BABAR analysis scaled to Belle II luminosity (×100), we find that a fit to the d distribution gives the prompt-lepton background yield with a ~10% error per mode $(D^0, D^+, D^{*0}, D^{*+})$


The distance d in $\tau \to 3\pi\nu$

Simulated background chosen just to test the capability to "see" the τ displacement:

 $\bar{B} \rightarrow D3\pi 2\nu$ with same kinematic distributions as signal

3-track vertex has much better resolution than single lepton:

Summary

- $\bar{B} \to D^{(*)} \tau \bar{\nu}$ is an important part of the physics programs of Belle II and LHCb
- In the $\tau \to \ell \nu \bar{\nu}$ mode, $\bar{B} \to D^{**} \ell \bar{\nu}$ background presents a systematic challenge
- Exploit Belle II's spatial resolution and small beamspot to obtain a new, model-independent handle on this background: distance *d* between the signal-B decay position and the lepton
- In the $\tau \to 3\pi\nu$ mode, 3 pions give improved precision on d and additional background suppression from the angle θ between \vec{d} and the 3-pion momentum vector.
- Even better resolution expected for $\bar{B} \to \tau \bar{\nu}$. Currently under study.