Determination of the CKM matrix elements $|V_{ub}|$ and $|V_{cb}|$ at Belle II

T. Lück on behalf of the Belle II collaboration

ICHECP 2018, Seoul (South Korea)

5th July 2018

Outline

- Introduction and motivation
- The Belle II detector
- ullet Prospects of $|V_{ub}|$ and $|V_{cb}|$ at Belle II
- First glance at Belle II data
- Summary

Introduction: Why measure $|V_{ub}|$ and $|V_{cb}|$?

ullet the unitarity of CKM matrix is strong constrain for new physics contributions: $VV^\dagger=1$

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \Rightarrow V_{ub}^* V_{ud} + V_{cb}^* V_{cd} + V_{tb}^* V_{td} = 0$$

• $|V_{ub}|$ and $|V_{cb}|$ only tree-level process constraints \Rightarrow insensitive to new physics (contributing through loops)

How to measure $|V_{ub}|$ and $|V_{cb}|$

Exclusive $|V_{ab}|$ measurement

- reconstruct specific final state e.g.: $B \to D\ell\nu$, $B \to \pi\ell\nu$
- $B \propto |V_{ab}|^2 \mathcal{F}^2$ with \mathcal{F} form factor (FF)

Inclusive $|V_{qb}|$ measurement

- ullet don't reconstruct specific final state but all: $B o X_q\ell
 u$
- $B \propto |V_{qb}|^2 \left[\Gamma(b \to q \ell \nu) + \frac{1}{m_b} + \alpha_s + ... \right]$

tagged vs. untagged analysis

- tagged analysis:
 - fully reconstruct other B-meson in $e^+e^- o B\bar{B}$
 - high purity but low statistics
- untagged analysis:
 - infer kinematics by rest of the event ⇒ less precise
 - high statistics but also higher background

Current status

- ullet discrepancy between inclusive and exclusive $|V_{ub}|$ and $|V_{cb}|$ ($pprox 3\sigma$)
- New physics? Biased measurements? Not well understood theory?

The Belle II detector

- instantaneous luminosity: $\mathcal{L}=8\times10^{35}~cm^{-2}s^{-1}$ provided by SuperKEKB accelerator at Tsukuba (Japan)
- goal integrated luminosity 50 ab^{-1} by 2025

How to reduce systematic uncertainties and deal with higher background at Belle II (part I)

higher luminosity also higher backgrounds ($\approx 40 \times$ wrt. Belle)

- fast readout electronics to reduce pile up effects in the ECL
- smaller boost w.r.t. Belle ⇒ better z-resolution needed
 - 2 layer Pixel + 4 layer of strip detectors (Belle: 4 layer strip det.)
- new and improved PID in Barrel region: imaging Time-of-Propagation detector
- added PID in the forward region (ARICH)
- new drift chamber: longer lever arm, smaller cells for inner layers, fast readout

better detector performance ⇒ reduction of some of the systematics

How to reduce systematic uncertainties and deal with higher background at Belle II (part II)

New algorithms to reduce systematic uncertainties

- for tagged analysis the tag calibration is one of the main sources of systematic uncertainties
- Belle II has an improved tagging algorithm (FEI)
- $\approx 2 \times$ efficiency, same purity \Rightarrow tighter selection

Full Event Interpretation (FEI)

• hierarchic reconstruction of events using multivariate methods

Tag	FR^4 @ Belle	FEI @ Belle MC	${\rm FEI}$ @ Belle II MC
Hadronic B^+	0.28~%	0.49~%	0.61%
Semileptonic B^+	0.67~%	1.42~%	1.45%
Hadronic B^0	0.18~%	0.33%	0.34%
Semileptonic B^0	0.63~%	1.33%	1.25%

Prospects of inclusive $|V_{cb}|$ at Belle II

- most precise determination from measurement of moments $< E_l^n >_{E_{cut}}$; $< M_X^{2n} >_{E_{cut}}$ as function of lower lepton momentum
- most recent: BABAR Phys. Rev. D.81 032003 (2010)
 - subset of total dataset $(210 \ fb^{-1})$
 - uncertainty on moments systematically limited
- only minor improvement by adding more statistics
- improved reconstruction can reduce systematics
- detailed study of possible biases w.r.t. incl. vs. excl. discrepancy

Phys. Rev. D.81 032003 (2010)

Exclusive $|V_{cb}|$ from $B \to D^* \ell \nu$

- first **unfolded** differential decay rates for $B \to D^* \ell \nu$ by Belle arXiv:1702.01521
- Bigi et al. arXiv:1703.06124: fit to (data + lattice) two different form factor parametrizations (BGL, CLN):

•
$$|V_{cb}|_{BGL} = 0.0417 \binom{+20}{-21}$$

•
$$|V_{cb}|_{CLN} = 0.0382(15)$$

- use of BGL seems to release incl. vs. excl. $|V_{cb}|$ tension \Rightarrow Real effect? Coincidence?
- more data needed ⇒ Belle II can provide those with its large dataset
- currently measured 4 1D differential decay rates \Rightarrow at Belle II one 4D differential decay rate measurement may be possible \Rightarrow very valuable input to theory

Prospects of inclusive $|V_{ub}|$ at Belle II

Global fit approach for inclusive $|V_{ub}|$

- biggest uncertainty from unknown shape function (motion of b-quark inside of B-meson)
- fit simultaneously $B \rightarrow X_c I \nu + B \rightarrow X_u I \nu + B \rightarrow X_s \gamma$
- allows extraction of $|V_{ub}|$ and shape function parameters at same time
- Belle II can provide required precise measurements of differential distributions

 reference: B2TIP report (submitted in the next two weeks)

Prospects of exclusive $|V_{ub}|$ at Belle II

- most precise estimation from exclusive $B o \pi^\pm \ell \nu$
- simultaneous fit to q^2 spectrum for FF parameters and $|V_{ub}|$

Prospects of $|V_{ub}|$ at Belle II

• comparison between most recent Belle (711 fb^{-1} and 605 fb^{-1}) and projected Belle II (at 5 ab^{-1} and 50 ab^{-1}) uncertainties

	Statistical	Systematic	Total Exp	Theory	Total
		(reducible, irreducible)			
$ V_{ub} $ exclusive (had. tagged)					
$711 \; { m fb^{-1}}$	3.0	(2.3, 1.0)	3.8	7.0	8.0
5 ab^{-1}	1.1	(0.9, 1.0)	1.8	1.7	3.2
50 ab^{-1}	0.4	(0.3, 1.0)	1.2	0.9	1.7
$ V_{ub} $ exclusive (untagged)					
605 fb^{-1}	1.4	(2.1, 0.8)	2.7	7.0	7.5
5 ab^{-1}	1.0	(0.8, 0.8)	1.2	1.7	2.1
50 ab^{-1}	0.3	(0.3, 0.8)	0.9	0.9	1.3
$ V_{ub} $ inclusive					
$605 \text{ fb}^{-1} \text{ (old } B \text{ tag)}$	4.5	(3.7, 1.6)	6.0	2.5 - 4.5	6.5 - 7.5
5 ab^{-1}	1.1	(1.3, 1.6)	2.3	2.5 - 4.5	3.4 - 5.1
50 ab^{-1}	0.4	(0.4, 1.6)	1.7	2.5 - 4.5	3.0 - 4.8
$ V_{ub} B \rightarrow \tau \nu$ (had. tagged)					
$711 \; {\rm fb^{-1}}$	18.0	(7.1, 2.2)	19.5	2.5	19.6
5 ab^{-1}	6.5	(2.7, 2.2)	7.3	1.5	7.5
50 ab^{-1}	2.1	(0.8, 2.2)	3.1	1.0	3.2
$ V_{ub} B \to \tau \nu \text{ (SL tagged)}$					
711 fb^{-1}	11.3	(10.4, 1.9)	15.4	2.5	15.6
5 ab^{-1}	4.2	(4.4, 1.9)	6.1	1.5	6.3
50 ab^{-1}	1.3	(2.3, 1.9)	2.6	1.0	2.8

First data from Belle II

- currently data taking for phase2:
 - full detector except only section of silicon tracker
 - main purpose: machine tuning and bkg. studies
 - though still in calibration phase data already usable for physics analysis

Reconstructed semileptonic B decay candidates

Summary

- prospects $|V_{cb}|$:
 - current measurements already very precise
 - opportunity for Belle II to measure differential rates ⇒ valuable input for theory; help to resolve inclusive vs exclusive puzzle
- ullet good prospects to improve on $|V_{ub}|$
- Belle II started taking data with partial detector
- install Layer 1 (pixel) and Layers 3-6 (strips) this fall (Layer 2 will be installed 2020 due to technical difficulties)
- start taking physics runs early 2019

Backup

Machine Parameters

2013/July/29	LER	HER	unit	
E	4.000	7.007	GeV	
I	3.6	2.6	А	
Number of bunches	2,5			
Bunch Current	1.44	1.04	mA	
Circumference	3,010	m		
ϵ_x/ϵ_y	3.2(1.9)/8.64(2.8)	4.6(4.4)/12.9(1.5)	nm/pm	():zero current
Coupling	0.27	0.28	%	includes beam-beam
β_x^*/β_y^*	32/0.27	25/0.30	mm	
Crossing angle	8	mrad		
α_p	3.18×10 ⁻⁴	4.53x10 ⁻⁴		
σδ	8.10(7.73)×10 ⁻⁴	6.37(6.30)×10 ⁻⁴		():zero current
Vc	9.4	15.0	MV	
σ_{z}	6.0(5.0)	5(4.9)	mm	():zero current
Vs	-0.0244	-0.0280		
Vx/Vy	44.53/46.57	45.53/43.57		
Uo	1.86	2.43	MeV	
T _{x,y} /T _s	43.2/21.6	58.0/29.0	msec	
ξ _× /ξ _y	0.0028/0.0881	0.0012/0.0807		
Luminosity	8x1	cm ⁻² s ⁻¹		

SuperKEKB: a next generation B-factory

- instantaneous luminosity: $L = 8 \times 10^{35} \text{cm}^{-2} \text{s}^{-1}$
- goal int. luminosity
 50ab⁻¹ by 2025
- new technologies: nano beam scheme

Extrapolation of Belle results

SuperKEKB luminosity projection

- $50ab^{-1}$ by the end of 2025
- $\bullet~\approx 50\times$ the Belle data sample, $\approx 100\times$ the BaBar data sample

Excerpt of results from Phys. Rev. D.81 032003 (2010)

- 4th and 5th column give stat. and syst. uncertainty, respectively
- last five columns give syst. uncertainties divided by source of uncertainty

_									
k	$p_{\ell, \mathrm{min}}^*$	$\langle m_X^k \rangle$	σ_{stat}	σ_{sys}	$^{ m MC}$	simulation	extraction	back-	signal
	[GeV/c]				statistics	related	$_{ m method}$	groud	model
1	0.8	2.0906	± 0.0063	± 0.0166	0.0058	0.0099	0.0096	0.0047	0.0031
	0.9	2.0890	± 0.0062	± 0.0158	0.0048	0.0088	0.0103	0.0045	0.0028
	1.0	2.0843	± 0.0061	± 0.0153	0.0044	0.0076	0.0109	0.0044	0.0027
	1.1	2.0765	± 0.0063	± 0.0165	0.0044	0.0072	0.0127	0.0047	0.0026
	1.2	2.0671	± 0.0064	± 0.0160	0.0046	0.0073	0.0120	0.0045	0.0025
	1.3	2.0622	± 0.0068	± 0.0168	0.0048	0.0073	0.0131	0.0050	0.0023
	1.4	2.0566	± 0.0073	± 0.0183	0.0047	0.0069	0.0150	0.0054	0.0021
	1.5	2.0494	± 0.0081	± 0.0198	0.0036	0.0074	0.0168	0.0061	0.0019
	1.6	2.0430	± 0.0092	± 0.0221	0.0038	0.0082	0.0187	0.0070	0.0018
	1.7	2.0387	± 0.0109	± 0.0265	0.0047	0.0081	0.0232	0.0083	0.0015
	1.8	2.0370	± 0.0143	± 0.0337	0.0069	0.0097	0.0299	0.0098	0.0013
	1.9	2.0388	± 0.0198	± 0.0413	0.0082	0.0123	0.0355	0.0150	0.0008
_									

Exclusive $|V_{ub}|$ from $B^- \to \tau^- \nu$

- fully reconstruct tag side and lepton on signal side
- extract signal in E_{ECL} : sum over all neutral cluster not used for reconstruction
- $\mathcal{B} \propto |V_{ub}|^2 f_B^2 m_I^2$

Definition $cos\theta_{BY}$

- for a decay $B \to X \ell \nu$
- the Y system defined as $Y = X + \ell$

•
$$cos\theta_{BY} = \frac{2E_B^*E_Y^* - M_B^2 - m_Y^2}{2p_B^*p_Y^*}$$