

Mario Merola (Università di Napoli Federico II and INFN)

On behalf of the Belle II Collaboration

Beach 2018, 17-23 June, Peniche

SuperKEKB

- Electron-positron collider situated at KEK (Tsukuba, Japan), upgrade of KEKB
- e^+e^- (4 GeV + 7 GeV) $\rightarrow B\overline{B}$ mainly at $\sqrt{s^{cm}}=10.58$ GeV (peak of $\Upsilon(4S)$ resonance)
- First collisions recorded on 26 April

10¹⁰ BB pairs per year

@ full luminosity

Cross sections at Y(4S)

Cross sections at 1 (45)				
Cross section (nb)				
1.2				
2.8				
0.8				
0.8				
44				
2.4				
~ 80				
~ 130				

^a The rate is pre-scaled by a factor of 1/100.

^b $\theta_{\rm lab} \ge 17^{\circ}$, $p_t \ge 0.1 {\rm GeV}/c$

From KEKB to SuperKEKB

Nano-beam scheme firstly proposed by P. Raimondi for SuperB

Factor ~ 40-50 in the luminosity

 $L = \frac{\gamma_{\pm}}{2 \, er_{e}} \left(1 + \frac{\sigma_{y}^{*}}{\sigma_{x}^{*}} \underbrace{I_{\pm} \xi_{y\pm}}_{\text{Vertical beta function at IP}} \frac{R_{L}}{R_{\xi_{y}}} \right)$

Higher backgrounds

- 2-photon-processes
- Radiation damage
- Occupancy in inner detectors
- Fake hits and pile-up

From Belle to Belle II

Belle Upgrade:

- VXD region: PXD and SVD (silicon pixel and strips detectors)
- Extended Drift Chamber region
- **ECL:** CsI(Tl) crystals. **New electronics** (waveform sampling and fitting)
- TOP and ARICH detectors: better hermeticity with new PID detector in the forward region
- KLM detector: RPCs and scintillators (some RPCs layers substituted with scintillators to resist neutron background)

- improved IP and secondary vertex resolution
- better K/π separation and flavor tagging
- robust against machine background
- higher K_S , π^0 and slow pions reconstruction efficiency

Unique capabilities of e⁺e⁻ B factories - Belle II

- **Beam energy constraint:** can be adjusted for different resonances Υ(nS)
- Clean experimental environment: high B, D, K, τ lepton and neutral final states reconstruction efficiency.
- **BB** produced in quantum correlated state: high flavour tagging efficiencies (34% vs 3% @LHCb)

Missing F $K^+\pi^+$ B_{sig} T^{*} $B^+ \to D^0\pi^+$ Candidate Candidate

BELLE

The full reconstruction of one B (B_{tag}) constraints the 4-momentum of the other (B_{sig})

Reconstruction of channels with missing energy

$$p_{\nu} = p_{e^+e^-} - p_{B_{tag}} - p_{B_{sig}}$$

B tag reconstruction strategy

Hadronic tagging

- Low efficiency
- + B tag completely reconstructed

Semileptonic tagging

- More backgrounds, B momentum unmeasured
- Higher efficiency

Inclusive tagging (no tagging)

- B-tag not explicitly reconstructed
- Reconstruct the signal and then use the Rest of Event (ROE) to constrain the neutrino momentum

Tag side reconstruction: Full Event Interpretation (FEI)

7

- It is an extension of the Full Reconstruction (FR) used in Belle, and uses a multivariate technique to reconstruct the B-tag side through $O(10^3)$ decay modes in a Y(4S) decay.
- Hierarchical approach: train multivariate classifiers (MVC) on FSP, then reconstruct intermediate particles and build new dedicated MVC. For each candidate a signal probability is defined, which represents the "goodness" of its reconstruction. It uses:
- PID, tracks momenta, impact parameters;
- Cluster info, energy and direction;
- Invariant masses, daughter momenta, vertex quality;
- Classifier output of the daughters

Tag algorithm date	MVA	Efficiency (%)	Purity	
Belle (2007)	Cut-based	0.1	0.25	
Belle FR (2011)	Neurobayes	0.2	0.25	
Belle II FEI (2017)	Boosted Decision Trees	0.5	0.25	

FEI performances with had tag

Belle FR: NIM A 654, 432-440 (2011)

Belle II FEI: https://ekp-invenio.physik.uni-karlsruhe.de/record/48602/files/EKP-2015-00001.pdf

Missing energy B meson decays

• Semileptonic decays (B ightarrow D(*) $\tau \nu$ / D(*) $l \nu$)

• Leptonic decay to tau leptons (B $\rightarrow \tau \nu$)

• Penguin electroweak decays (B \rightarrow K^(*) $\nu\nu$)

Belle II full simulation studies summarized in the Belle II

Physics Book to be published in 2018

Missing energy B meson decays

• Semileptonic decays (B \rightarrow D^(*) $\tau \nu$ / D^(*) $l\nu$)

• Leptonic decay to tau leptons $(B \rightarrow \tau \nu)$

• Penguin electroweak decays (B \rightarrow K^(*) $\nu\nu$)

Updates expected by the next Beach Conference!

Semileptonic decays: $B \rightarrow D^{(*)}\tau \nu$ and $B \rightarrow D^{(*)}l\nu$

Clear test of the SM LFU: **NP** (charged Higgs in 2HDM models or Leptoquarks) can affect the BR and the tau polarization P_{τ}

$$\mathcal{R}(D^{(*)}) = \frac{\mathcal{B}(\bar{B} \to D^{(*)}\tau^{-}\bar{\nu}_{\tau})}{\mathcal{B}(\bar{B} \to D^{(*)}\ell^{-}\bar{\nu}_{\ell})} \quad (\ell = e, \mu)$$

Advantages of measuring $R(D^{(*)})$:

- experimentally we eliminate the uncertainties on the tagging efficiencies
- theoretically we eliminate the uncertainties on $\left|V_{cb}\right|$ and on the semileptonic form factors

Belle measurements of $R(D^*)$ and P_{τ}

-1.0

-0.5

0.0

Measurement of R(D*)

(Belle PRD 94, 072007(2016) **SL tag**)

Signal and normalization separation is based on the missing mass and the angle between B meson and D*l system

1.0

ONB

0.5

$$\mathcal{R}(D^*) = \frac{1}{2\mathcal{B}(\tau^- \to \ell^- \bar{\nu}_{\ell} \nu_{\tau})} \cdot \frac{\varepsilon_{\text{norm}}}{\varepsilon_{\text{sig}}} \cdot \frac{N_{\text{sig}}}{N_{\text{norm}}}$$

Measurement of P_{τ}

Belle PRL 118, 211801 (2017) Had tag

Extract the fractions with positive and negative tau helicity

Results in the next page

$R(D^{(*)})$ and P_{τ} measurements and Belle II projections

Current combination: 4.1 a

 \boldsymbol{P}_{τ} in agreement with SM

	ΔR(D) [%]			ΔΙ	R(D*) [%]
	Stat	Sys	Total	Stat	Sys	Total
Belle 0.7 ab ⁻¹	14	6	16	6	3	7
Belle II 5 ab-1	5	3	(6)	2	2	(3)
Belle II 50 ab ⁻¹	2	3	3	1	2	2

Main systematics: $B \to D^{**}lv$ modelling, hadronic B decay composition, yield of fake D^* candidates

Projections based on Belle SL tag measurement

Belle II full simulation studies in progress

50 ab⁻¹ projection of subtracted q^2 spectrum in $B \rightarrow D^{(*)} \tau \nu$

Leptonic B decays

Helicity suppressed decays

$$BR_{SM} (B \to \ell \nu) = \frac{G_F^2 m_B \tau_B}{8\pi} f_B^2 |V_{ub}|^2 m_\ell^2 \left[1 - \frac{m_\ell^2}{m_B^2} \right]^2$$

 (H^+, W^+)

Sensitive to NP contributions, e.g. type III Higgs doublet model [PhysRevD.86.054014]

SM Prediction $(1.09 \pm 0.21) \cdot 10^{-11}$ $(4.65 \pm 0.91) \cdot 10^{-7}$ $(1.03 \pm 0.2) \cdot 10^{-4}$

Clean theoretically, hard experimentally: only $B \rightarrow \tau \nu$ has been measured

Belle combination

$$\mathcal{B} = [0.91 \pm 0.19(\text{stat.}) \pm 0.11(\text{syst.})] \times 10^{-4}$$
(evidence at ~4.6 σ level)

Belle PRD 92, 051102 (2015), SL tag

Leptonic B decays: $B \rightarrow \tau \nu$

Belle II full simulation study

- Hadronic tag with FEI
- 1-prong τ decays ($\mu\nu\nu$, $e\nu\nu$, $\pi\nu$, $\rho\nu$)
- Dedicated study on machine background impact
- ullet ML fit to extra energy E_{ECL}

Extra energy in the calorimeter

Main systematic uncertainties:

background E_{Extra} PDF, branching fractions of the peaking backgrounds, tagging efficiency, and K_{L}^{0} veto efficiency

	Integrated Luminosity (ab ⁻¹)	1	5	50
	statistical uncertainty (%)	29.2	13.0	4.1
hadronic tag	systematic uncertainty (%)	12.6	6.8	4.6
	total uncertainty (%)	31.6	(14.7)) 6.2
	statistical uncertainty (%)	19.0	8.5	2.7
semileptonic tag	systematic uncertainty (%)	17.9	8.7	4.5
	total uncertainty (%)	26.1	12.2	5.3

Observation at $\sim 3 \text{ ab}^{-1}$

Flavour changing neutral current $B \to K^{(*)} \nu \overline{\nu}$

15

- Prohibited in the SM at tree level: penguin + box diagrams
- BR $\sim 10^{-5} \div 10^{-6}$; NP contribution can increase the BR by factor 50
 - non standard Z-couplings (SUSY)
 - New missing energy sources (DM, extra dim.)

Belle PRD(R) 96, 091101 (2017)

SM prediction

BaBar hadronic

Flavour changing neutral current $B \to K^{(*)} \nu \overline{\nu}$

•

Belle II full simulation study

- Hadronic tag with FEI
- $K^* \rightarrow K\pi^0$
- Powerful discriminating variable $E^*_{miss} + cp^*_{miss}$
- Projections performed with a cut and count analysis in extra energy signal window

Observation at ~18 ab⁻¹

Conclusions

- Unique capabilities of Belle II to study **B** decays with missing energy in the final state
- Within the first two years of data taking Belle II will collect 5 to 10 ab⁻¹ and will be able to address the Lepton Flavour Universality Violation by precisely measuring **R(D)** and **R(D*)**
- Belle II will also be able to test new physics scenarios precisely measuring leptonic B decays into taus (first two years) and FCNC processes (with less than half of the total dataset)
- In addition Belle II will also have the sensitivity to shed light on the $|V_{ub}|$ puzzle from inclusive and exclusive semileptonic decays and investigate other rare processes suppressed in the SM $(B \to l \nu \gamma, B \to l \nu, B \to \nu \nu)$

Thanks!

Backup

19

First data (particles re-discovery)

π^0 invariant mass

R2 is the ratio between H_2 and H_0

Improvement in Belle II algorithms: background rejection

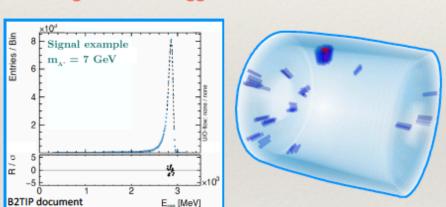
FEI performance with hadronic B-tag reconstruction

Tag algorithm date	MVA	Efficiency	Purity	
Belle (2007)	Cut-based	0.1	0.25	
Belle FR (2011)	Neurobayes	0.2	0.25	
Belle II FEI (2017)	Boosted Decision Trees	0.5	0.25	

Rejection of the continuum $e^+e^- \rightarrow q\bar{q}$ background

Phase II

Tracking without VXD


What can we do with phase II data?

- Background studies
- Detector and trigger performance studies
- Simulation validation
- Exercising of calibration and alignment procedures
- Reconstruction algorithm tuning
- Physics measurements (quarkonia and dark sector)

Early physics: the dark sector

- Light dark matter and light mediator searches in Belle II:
 - Dark photons, dark higgs, axion-like particles (ALPs), mass scale ~GeV or sub-GeV.
 - ♦ Production, e.g.: $e^+e^- \rightarrow M+X$, $e^+e^- \rightarrow Y(ns) \rightarrow M+X$, $e^+e^- \rightarrow B+X \rightarrow K+M+X$.
- Example: on-shell dark photon decaying to invisible DM:
 - Signal: single, mono-energetic, high-E photon & peak in recoil mass.
 - Single Photon trigger with 1 GeV threshold.

- Particularly relevant with Phase 2 data:
 - Low luminosity and lower beam background allow to open up triggers.
 - Small dataset can still give world best sensitivity.

Belle II calo more hermetic than BaBar

Roadmap

Calendar Year

FEI Calibration

FEI validated on Belle real data

Figure 4.18.: The overall efficiency correction calculated by measuring the known branching fractions of 10 control channels on converted Belle data [76].

Semileptonic decays: $B \rightarrow X_u lv$

Measurement of |V_{ub}| from inclusive and exclusive B decays

Inclusive decays measurement

- Hadronic tag
- Exploit kinematic endpoints to reduce $B \rightarrow X_c l \nu$ bkg

Tension between inclusive and exclusive $|V_{ub}|$ measurements

$$|V_{ub}|^2 = \Delta \mathcal{B}_{u\ell\nu}/(au_B\Delta \mathcal{R})$$

Measured BR in fiducial B meson Predicted partial phase space region lifetime decay rate

Semileptonic decays: $B \rightarrow X_u lv$

• $B^0 \rightarrow \pi \, l \, \nu \, decay$

Belle II Full Simulation study

- Untagged or tagged (with FEI)
- Exploit missing mass and extra energy in the calorimeter
- $\mathcal{B} \sim f_i |V_{ub}|^2$; form factors f_i computed with LQCD (PRD 91, 074510 (2015))

Belle II @ 50 ab⁻¹: ~3% (inclusive) / ~2% (exclusive π 1 ν) uncertainty

Semileptonic decay: $B^0 \rightarrow \pi l \nu$

Table 54: Summary of systematic uncertainties on the branching fractions of $B^0 \to \pi^- \ell^+ \nu_\ell$ decays in hadronic tagged and untagged Belle analyses with 711 fb⁻¹ [271] and 605 fb⁻¹ [269] data samples, respectively. The estimated precision limit for some sources of systematic uncertainties is given in brackets.

Source	Error (Li	imit) [%]
	Tagged [%]	Untagged
Tracking efficiency	0.4	2.0
Pion identification	-	1,3
Lepton identification	1.0	2.4
Kaon veto	0.9	_
Continuum description	1.0	1.8
Tag calibration and $N_{B\overline{B}}$	4.5 (2.0)	2.0 (1.0)
$X_u\ell\nu$ cross-feed	0.9	0.5 (0.5)
$X_c\ell\nu$ background	_	0.2(0.2)
Form factor shapes	1.1	1.0(1.0)
Form factor background	_	0.4(0.4)
Total	5.0	4.5
(reducible, irreducible)	(4.6, 2.0)	(4.2, 1.6)

LQCD: current is the world avergage by FLAG group

- 5 yr w/o EM": We assume a factor of 2 reduction of the lattice QCD uncertainty in the next ve years and that the uncertainty of the EM correction is negligible (e.g. for processes insensitive to the EM correction).
- 5 yr w/ EM": The lattice QCD uncertainty is reduced by a factor of 2, but we add in quadrature 1% uncertainty from the EM correction 19.
- 10 yr w/o EM": We assume a factor of 5 reduction of the lattice QCD uncertainty in the next ten years. It is also assumed that the EM correction will be under control and its uncertainty is negligible.
- 10 yr w/ EM": We assume lattice QCD uncertainties reduced by a factor of 5, but add in quadrature 1% uncertainty from the EM correction.

R(D*) Belle measurement

Belle PRD 94, 072007(2016) SL tag

	\mathcal{R}	$(D^*) \ [\%]$	
Sources	$\ell^{\rm sig} = e, \mu$	$\ell^{\text{sig}} = e$	$\ell^{\rm sig} = \mu$
MC size for each PDF shape	2.2	2.5	3.9
PDF shape of the normalization in $\cos \theta_{B-D^*\ell}$	$^{+1.1}_{-0.0}$	$^{+2.1}_{-0.0}$	$^{+2.8}_{-0.0}$
PDF shape of $B \to D^{**}\ell\nu_{\ell}$	$^{+1.0}_{-1.7}$	$^{+0.7}_{-1.3}$	$^{+2.2}_{-3.3}$
PDF shape and yields of fake $D^{(*)}$	1.4	1.6	1.6
PDF shape and yields of $B \to X_c D^*$	1.1	1.2	1.1
Reconstruction efficiency ratio $\varepsilon_{\text{norm}}/\varepsilon_{\text{sig}}$	1.2	1.5	1.9
Modeling of semileptonic decay	0.2	0.2	0.3
${\cal B}(au^- o \ell^- ar u_\ell u_ au)$	0.2	0.2	0.2
Total systematic uncertainty	$+3.4 \\ -3.5$	$^{+4.1}_{-3.7}$	$+5.9 \\ -5.8$

Semitauonic decays: R(D) and R(D*)

Experiment	Tag method	τ mode	R_D	$R_{D^{\star}}$	ρ
Belle 07*	Inclusive	ενν, πν	0.38±0.11	0.34±0.08	
Belle 10*	Inclusive	Ινν, πν	0.30±0.11	0.34±0.06	-
Babar 12	Hadronic	lνν	0.440±0.058±0.042	0.332±0.024±0.018	-0.27
Belle 15	Hadronic	lνν	0.375±0.064±0.026	0.293±0.038±0.015	-0.32
Belle 16	Semileptonic	lνν	IN PROGRESS	0.302±0.030±0.011	-
Belle 17	Hadronic	πν, ρν	-	0.270±0.035±0.027	-
LHCb 16	_	lνν	-	0.336±0.027±0.030	-
LHCb 17		3πν	-	0.286±0.019±0.033	-
Belle ave.	SL+Had	-	0.374±0.061	0.292±0.020±0.012	-0.29

	Experiment	SL tag R _{D*}	Had tag R _{D*} , τ→h ν	Had tag R _{D*} , τ→l∨∨	Had tag R _D , τ→lνν
1	MC statistics	2.2	3.5	-	-
2	B → D** l v modelling	+1, -1.7	2.4	1.5	4.2
3	$B \rightarrow D^* l v$	+1.3, -0.2	2.3	-	-
4	D** decay modes	(in 2)	(in 2)	1.3	3.0
5	Hadronic B decays	1.1	7.3	-	-
6	B → D** τν	(in 2)	(in 2)	-	-
7	Fake D ^(*)	1.4	0.2	0.3	0.5
8	Fake lepton	-	-	0.6	0.5
9	Lepton ID	1.2	1.8	0.5	0.5
10	τBr	0.2	0.3	0.2	0.2
11	Other	-	2.3	-	-
	Total	3.5	9.9	5.2	7.1

$B \rightarrow sll : R(K^*)$

LHCb values based on naive run-1 extrapolation (not official) Belle II scenarios due to operating conditions at KEK

** Consider it as a sketch to show Belle II can provide confirmation of any persistent anomaly.

Flavour changing neutral current $B \to K^{(*)} \nu \overline{\nu}$

In BSM right handed operator for neutrinos $Q_R^{\ell} = (\bar{s}_R \gamma_{\mu} b_R)(\bar{\nu}_{\ell L} \gamma^{\mu} \nu_{\ell L})$

$$\frac{\operatorname{Br}(B \to K \nu \bar{\nu})}{\operatorname{Br}(B \to K \nu \bar{\nu})_{SM}} = \frac{1}{3} \sum_{\ell} (1 - 2 \eta_{\ell}) \epsilon_{\ell}^{2},$$

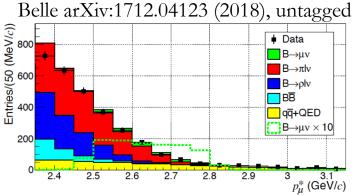
$$\frac{\operatorname{Br}(B \to K \nu \bar{\nu})}{\operatorname{Br}(B \to K \nu \bar{\nu})_{SM}} = \frac{1}{3} \sum_{\ell} (1 - 2 \eta_{\ell}) \epsilon_{\ell}^{2},$$

$$\frac{\operatorname{Br}(B \to K^{*} \nu \bar{\nu})}{\operatorname{Br}(B \to K^{*} \nu \bar{\nu})_{SM}} = \frac{1}{3} \sum_{\ell} (1 + \kappa_{\eta} \eta_{\ell}) \epsilon_{\ell}^{2},$$

$$\epsilon_{\ell} = \frac{\sqrt{|C_L^{\ell}|^2 + |C_R^{\ell}|^2}}{|C_L^{\text{SM}}|},$$

$$\eta_{\ell} = \frac{-\operatorname{Re}\left(C_L^{\ell} C_R^{\ell*}\right)}{|C_L^{\ell}|^2 + |C_R^{\ell}|^2}.$$

Leptonic B decays: $B \rightarrow \mu \nu$ and radiative $B \rightarrow l \nu \gamma$



$B \rightarrow \mu \nu$

- Two body decay: $p_{\mu}^* = m_B/2$ in B rest frame
- Tagging \rightarrow better p_{μ}^* resolution but small statistics
- $\sim 2.4\sigma$ measurement

$B \rightarrow l\nu\gamma$

- Radiative decay lifts the helicity suppression
- Allows a measurement of $\lambda_B \rightarrow$ crucial input to QCD factorization predictions of charmless hadronic B decays

Leptonic radiative $B \rightarrow l\nu\gamma$

$$\Gamma = \frac{d\Gamma}{dE_{\gamma}} = \frac{\alpha_{em}G_{\mathrm{F}}^2 m_B^4 |V_{ub}|^2}{48\pi^2} x_{\gamma}^3 (1 - x_{\gamma}) [F_A^2 + F_V^2].$$

$$\begin{split} F_V(E_\gamma) &= \frac{Q_u m_B f_B}{2E_\gamma \lambda_B} R(E_\gamma, \mu) + \left[\xi(E_\gamma) + \frac{Q_b m_B f_B}{2E_\gamma m_b} + \frac{Q_u m_B f_B}{\left(2E_\gamma\right)^2} \right], \\ F_A(E_\gamma) &= \frac{Q_u m_B f_B}{2E_\gamma \lambda_B} R(E_\gamma, \mu) + \left[\xi(E_\gamma) - \frac{Q_b m_B f_B}{2E_\gamma m_b} - \frac{Q_u m_B f_B}{\left(2E_\gamma\right)^2} + \frac{Q_\ell f_B}{E_\gamma} \right], \end{split}$$

Beneke and Rohrwild, 2011, https://doi.org/10.1140/epjc/s10052-011-1818-8

Physics prospects: Belle II vs LHCb

3

Observables	Expected th. accuracy	Expected exp. uncer- tainty	Facility (2025)
UT angles & sides			
ϕ_1 [°]	***	0.4	Belle II
ϕ_2 [°]	**	1.0	Belle II
φ ₃ [°]	***	1.0	Belle II/LHCb
$ V_{cb} $ incl.	***	1%	Belle II
$ V_{cb} $ excl.	***	1.5%	Belle II
$ V_{ub} $ incl.	**	3%	Belle II
$ V_{ub} $ excl.	**	2%	Belle II/LHCb
CPV			
$S(B \to \phi K^0)$	***	0.02	Belle II
$S(B \to \eta' K^0)$	***	0.01	Belle II
$A(B \to K^0 \pi^0)[10^{-2}]$	***	4	Belle II
$A(B \to K^+\pi^-) [10^{-2}]$	***	0.20	LHCb/Belle II
(Semi-)leptonic			
$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	**	3%	Belle II
$\mathcal{B}(B \to \mu \nu) \ [10^{-6}]$	**	7%	Belle II
$R(B \to D \tau \nu)$	***	3%	Belle II
$R(B o D^* au u)$	***	2%	Belle II/LHCb
Radiative & EW Penguins	s		
$\mathcal{B}(B o X_s \gamma)$	**	4%	Belle II
$A_{CP}(B \to X_{s,d}\gamma) [10^{-2}]$	***	0.005	Belle II
$S(B \to K_S^0 \pi^0 \gamma)$	***	0.03	Belle II
$S(B o ho \gamma)$	**	0.07	Belle II
$\mathcal{B}(B_s \to \gamma \gamma) \ [10^{-6}]$	**	0.3	Belle II
$\mathcal{B}(B \to K^* \nu \overline{\nu}) \ [10^{-6}]$	***	15%	Belle II
$\mathcal{B}(B \to K \nu \overline{\nu}) [10^{-6}]$	***	20%	Belle II
$R(B \to K^*\ell\ell)$	**	0.03	Belle II/LHCb

	Observables	Belle or LHCb*	Be	lle II	L	HCb
		(2014)	$5~\rm ab^{-1}$	$50~\rm ab^{-1}$	2018	$50~{\rm fb^{-1}}$
Charm Rare	$\mathcal{B}(D_s \to \mu \nu)$	$5.31 \cdot 10^{-3} (1 \pm 5.3\% \pm 3.8\%)$	2.9%	0.9%		
	$\mathcal{B}(D_s o au u)$	$5.70 \cdot 10^{-3} (1 \pm 3.7\% \pm 5.4\%)$	3.5%	2.3%		
	$\mathcal{B}(D^0 \to \gamma \gamma) \ [10^{-6}]$	< 1.5	30%	25%		
Charm CP	$A_{CP}(D^0 \to K^+K^-)$ [10 ⁻⁴]	$-32\pm21\pm9$	11	6		
	$\Delta A_{CP}(D^0 \to K^+K^-) [10^{-3}]$	3.4*			0.5	0.1
	$A_{\Gamma} \ [10^{-2}]$	0.22	0.1	0.03	0.02	0.005
	$A_{CP}(D^0 \to \pi^0 \pi^0) [10^{-2}]$	$-0.03 \pm 0.64 \pm 0.10$	0.29	0.09		
	$A_{CP}(D^0 \to K_S^0 \pi^0) [10^{-2}]$	$-0.21 \pm 0.16 \pm 0.09$	0.08	0.03		
Charm Mixing	$x(D^0 \to K_S^0 \pi^+ \pi^-) [10^{-2}]$	$0.56 \pm 0.19 \pm {0.07 \atop 0.13}$	0.14	0.11		
	$y(D^0 \to K_S^0 \pi^+ \pi^-) [10^{-2}]$	$0.30 \pm 0.15 \pm {0.05 \atop 0.08}$	0.08	0.05		
	$ q/p (D^0 \rightarrow K_S^0 \pi^+ \pi^-)$	$0.90 \pm {0.16 \atop 0.15} \pm {0.08 \atop 0.06}$	0.10	0.07		
	$\phi(D^0\to K^0_S\pi^+\pi^-)\ [^\circ]$	$-6 \pm 11 \pm \frac{4}{5}$	6	4		
Tau	$\tau \to \mu \gamma \ [10^{-9}]$	< 45	< 14.7	< 4.7		
	$ au ightarrow e \gamma \ [10^{-9}]$	< 120	< 39	< 12		
	$\tau \to \mu \mu \mu \ [10^{-9}]$	< 21.0	< 3.0	< 0.3		

Belle II Physics Book

- B2TiP Report (600p)
 - https://confluence.desy.de/ display/BI/B2TiP+ReportStatus
- To be published in PTEP / Oxford University Press & printed.
 - Belle II Detector, Simulation, Reconstruction, Analysis tools
 - Physics working groups
 - New physics prospects and global fit code

PTEP

Prog. Theor. Exp. Phys. 2015, 00000 (319 pages) DOI: 10.1093/ptep/0000000000

The Belle II Physics Book

Emi Kou $^{\! 1},$ Phillip Urquijo $^{\! 2},$ The Belle II collaboration $^{\! 3},$ and The B2TiP theory community $^{\! 4}$

- ^{1}LAL
- *E-mail: kou@lal.in2p3.fr
- 2 Melbourne
- *E-mail: purquijo@unimelb.edu.au
- ³Addresses of authors
- ⁴Addresses of authors

The report of the Belle II Theory Interface Platform is presented in this document.

		Contents	PAGE
	Intro	duction	6
	1.1	Goals	6
	1.2	Particle physics after the B -factories and LHC run I (and run II	first
	data)		7
	1.3	Flavour physics questions to be addressed by Belle II	7
	1.4	Advantages of SuperKEKB and Belle II	8
	1.5	Overview of SuperKEKB	9
	1.6	Data taking overview	10
	1.7	The Belle II Golden channels	10
2	Belle	II Simulation	11
	2.1	Introduction	11
	2.2	Cross Sections	11
	2.3	Generators	11
	2.4	Beam-induced background	15
	2.5	Detector Simulation	17