Prospects of Dalitz Analysis on Charm Physics at Belle II

Longke LI¹ (李龙科)

On behalf of the Belle II Collaboration

¹Institute of High Energy Physics, CAS, China (IHEP)

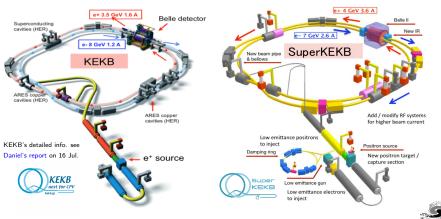
PWA 10/ATHOS 5, July 16th-20th, 2018, Beijing

Outline

- 1 Belle experiment to Belle II experiment
 - Accelerator and Nano-beam
 - Detector and its highlights
 - Data set and Collaboration
- 2 Prospects of TDDA on charm at Belle II
 - \bullet D^0 - $\overline{D^0}$ mixing and CP violation
 - Time-dependent Dalitz analysis
 - Prospect of TDDA in $D^0 o K_S^0 \pi^+ \pi^-$
 - ullet Prospect of TDDA in $D^0 o K^+\pi^-\pi^0$
 - A new D⁰-tag method: ROE method
- Re-discoveries of Phase2 at Belle II
- Summary

Outline

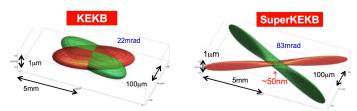
- Belle experiment to Belle II experiment
 - Accelerator and Nano-beam
 - Detector and its highlights
 - Data set and Collaboration
- Prospects of TDDA on charm at Belle II
 - D^0 - $\overline{D^0}$ mixing and CP violation
 - Time-dependent Dalitz analysis
 - Prospect of TDDA in $D^0 o K_S^0 \pi^+ \pi^-$
 - ullet Prospect of TDDA in $D^0 o K^+\pi^-\pi^0$
 - A new D⁰-tag method: ROE method
- Re-discoveries of Phase2 at Belle I
- Summary



Belle experiment to Belle II experiment

Accelerator: KEKB Vs. SuperKEKB

- ► As 1st and 2nd generation B-factory located at Tsukuba in Japan, KEKB and SuperKEKB have many similarities, along with more differences, such as
 - Damping ring: for a high-intensity e^+ beam.
 - beam energy: admit lower asymmetry to mitigate Touschek effects.
 - ullet beam current: ~ 2 improved to contribute to higher luminosity.



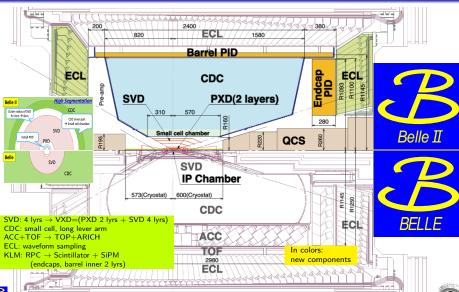
Nano-Beam Scheme

Belle experiment to Belle II experiment

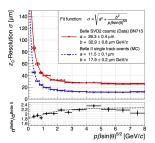
- The SuperKEKB upgrade is based on 'Nano-beam' scheme (first proposed for SuperB in Italy)
- Its basic idea is to squeeze the vertical beta function at the IP β_{ν}^* by minimizing the longitudinal size of the overlap region of the two beams at the IP.

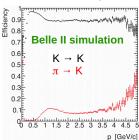
luminosity

$$\mathcal{L} = rac{\gamma_{\pm}}{2er_{e}} \left(1 + rac{\sigma_{y}^{*}}{\sigma_{x}^{*}}
ight) rac{\emph{I}_{\pm} \xi_{y\pm}}{oldsymbol{eta}_{y\pm}^{*}} \left(rac{R_{L}}{R_{\zeta_{y}}}
ight)$$


beam size: σ^* , beam-beam par.: $\dot{\xi}_{\pm}$, beam current: I_+ , beta function: β^*

	E_{\pm} (GeV)	Cross Angle	/ _± (A)	β* (mm)	L
	LER/HER	(mrad)	LER/HER	LER/HER	$(cm^{-2}s^{-1})$
KEKB	3.5/8.0	22	1.64/1.19	5.9/5.9	2.1×10^{34}
SuperKEKB	4.0/7.0	83	3.60/2.60	0.27/0.31	80×10^{34}
	$\beta\gamma \sim 2/3$		×2	×20	×40

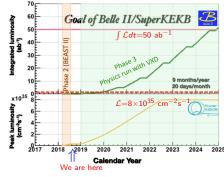

Detector: Belle Vs. Belle II



Detector highlights at Belle II

- ▶ Under higher luminosity(×50), Belle II is fighting with
 - (1) higher machine backgrounds (×20);
 - (2) higher event rate (×10)
 - (3) reduced energy asymmetry ($\beta\gamma$: 0.45 \rightarrow 0.28)
- A lot of improved performances, such as
 - improved L1 trigger: 500Hz (Belle) Vs. 30kHz (Belle II).
 - vertex detector(VXD): better spatial resolution (Belle II: ~ 2 better than Belle)
 - VXD: $\sim 30\%$ larger acceptance for K_S^0 reconstruction
 - higher tracking reconstruction efficiency
 - better particle identification: $K(\pi)$ eff. > 90% with fake rate < 10% for p < 4 GeV/c.

Belle experiment to Belle II experiment

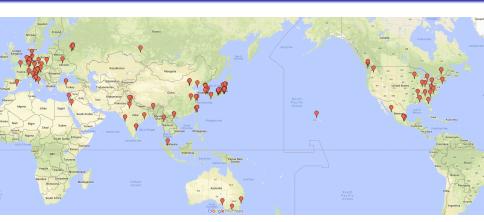

larger Data set at Belle II

- ► Each 1 ab⁻¹ dataset at B-factory provides:
 - $\sim 1.1 \times 10^9 \ B\bar{B} \Rightarrow a B-factory$:
 - $\sim 1.3 \times 10^9 \ c\bar{c} \Rightarrow a \ charm-factory;$
 - $\sim 0.9 \times 10^9 \ \tau^+ \tau^- \Rightarrow \text{a } \tau\text{-factory};$
 - wide region $E_{c,m}^{eff}$ =[0.5-10] GeV via ISR process.
 - Available charm dataset at some experiments:

Experiment	Machine	C.M √s	Luminosity	charm sample	efficiency
CLEOc	CESR (e ⁺ e ⁻)	3.77 GeV	$0.8 \; { m fb}^{-1}$	$2.9 \times 10^{6}(D^{0})$ $2.3 \times 10^{6}(D^{+})$	
- 7 -		4.17 GeV	0.6 fb^{-1}	$0.6 \times 10^6 (D_s^+)$	~10-30%
B€SII	BEPC-II (e^+e^-)	3.77 GeV	$2.9 \; {\rm fb^{-1}}$	$10.5 \times 10^{6}(D^{0})$ $8.4 \times 10^{6}(D^{+})$	10-3070
ВСЭЩ		4.18 GeV 4.6 GeV	3.0 fb ⁻¹ 0.6 fb ⁻¹	$3 \times 10^{6} (D_s^+)$ $1 \times 10^{5} (\Lambda_s^+)$	
				*` ``	***
But	KEKB (e ⁺ e ⁻)	10.58 GeV	$1~ab^{-1}$	$1.3 \times 10^{9} (D^{0})$ $7.7 \times 10^{8} (D^{+})$ $2.5 \times 10^{8} (D_{s}^{+})$ $1.5 \times 10^{8} (\Lambda_{c}^{+})$ $6.5 \times 10^{8} (D^{0})$ $3.8 \times 10^{8} (D^{+})$	~5-10%
	(e ⁺ e ⁻)	10.58 GeV	0.5 ab ⁻¹	$1.2 \times 10^{8} (D_{s}^{+})$ $0.7 \times 10^{8} (\Lambda_{c}^{+})$ $\star \star$	**
	Tevatron $(p\bar{p})$	1.96 TeV	9.6 fb ⁻¹	1.3×10^{11}	.0.50/
LHCb	LHC (pp)	7 TeV 8 TeV	1.0 fb ⁻¹ 2.0 fb ⁻¹	5.0×10^{12}	<0.5%
rue p				***	*

- Belle II is back to the game.
 - Phase 2 has finished (Apr 26 Jul 17)
 - Phase 3 (physics run) will start next spring. $\mathcal{L}(Belle+BaBar)$ will be reached in next year.

 - collect $\sim 5 \ ab^{-1}$ by mid 2020.
 - collect 50 ab⁻¹ before 2025.


• Belle II awards us a huge B/charm/ τ sample.

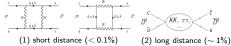
Belle experiment to Belle II experiment

A big family in Belle II Collaboration

- Belle Collaboration : 536 colleagues, 91 institutions, 20 countries/regions
- Belle II Collaboration: 822 colleagues, 110 institutions, 25 countries/regions
- Belle II has 7 inst. from China mainland (including two new inst. this Jun):
 - IHEP(14), USTC(6), Peking(3), BUAA(9), Fudan(7) + LNNU + Soochow.

Outline

- Belle experiment to Belle II experiment
 - Accelerator and Nano-beam
 - Detector and its highlights
 - Data set and Collaboration
- 2 Prospects of TDDA on charm at Belle II
 - D^0 - $\overline{D^0}$ mixing and CP violation
 - Time-dependent Dalitz analysis
 - ullet Prospect of TDDA in $D^0 o K_S^0 \pi^+ \pi^-$
 - ullet Prospect of TDDA in $D^0 o K^+\pi^-\pi^0$
 - A new D⁰-tag method: ROE method
- Re-discoveries of Phase2 at Belle I
- Summary


Open-flavor neutral meson transforms to anti-meson:

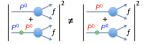
$$K^0 \Leftrightarrow \overline{K^0}, \ B^0_d \Leftrightarrow \overline{B^0_d}, \ B^0_s \Leftrightarrow \overline{B^0_s}, \ D^0 \Leftrightarrow \overline{D^0}$$

• Flavor eigenstate $(|D^0\rangle, |\overline{D^0}\rangle) \neq \text{mass eigenstate}$ $|D_{1,2}\rangle$ with $M_{1,2}$ and $\Gamma_{1,2}$)

$$|D_{1,2}\rangle \equiv p|D^0\rangle \pm q|\overline{D^0}\rangle$$
 (CPT: p²+q²=1)

- Mixing parameters: $\mathbf{x} \equiv 2 \frac{M_1 M_2}{\Gamma_4 + \Gamma_2}$, $\mathbf{y} \equiv \frac{\Gamma_1 \Gamma_2}{\Gamma_4 + \Gamma_2}$
- Unique system: only up-type meson for mixing
- Standard Model(SM) predicts: $\sim \mathcal{O}(1\%)$

 Precise measurement of x, y: effectively limit the New Physics(NP) modes; and search for NP, eg: $|x|\gg |y|$


► Three types of Charged-conjugated-Parity combined symmetry Violation (CPV):

$$A_{CP}^{f} = \frac{\Gamma(D \to f) - \Gamma(\bar{D} \to \bar{f})}{\Gamma(D \to f) + \Gamma(\bar{D} \to \bar{f})} = a_{d}^{f} + a_{m}^{f} + a_{i}^{f}$$

• a_d^f : (direct CPV) CPV in decay $|\bar{A}_f/A_f| \neq 1$

$$\left| \frac{P^0}{I} \right|^2 \neq \left| \frac{P^0}{I} \right|^2$$

- a_m^f : CPV in mixing with $r_m = |q/p| \neq 1$ $\left|\frac{P^0}{P^0}\right|^2 \neq \left|\frac{P^0}{P^0}\right|^2$
- a_i^f : CPV in interference with $arg(q/p) \neq 0$

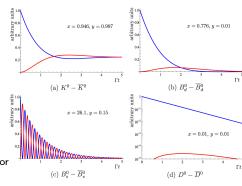
- SM with only a source: the phase in CKM
- in charm sector, it's predicted at $\sim \mathcal{O}(10^{-3})$
- ullet $\sim 1\%$ exp. sensitivity to observe CPVightarrowNP

Belle experiment to Belle II experiment

 $D^0 - \overline{D^0}$ mixing and CP violation

Time evolution of D^0 - $\overline{D^0}$ system

• Time evolution of $D^0 - \overline{D^0}$ system:


$$i\frac{\partial}{\partial t} \left(\frac{D^{0}(t)}{\overline{D^{0}}(t)} \right) = \left(M - \frac{i}{2}\Gamma \right) \left(\frac{D^{0}(t)}{\overline{D^{0}}(t)} \right)$$
diagonal: $D \to D$, non-diagonal: $D \to D$.

• Measure $D^0 - \overline{D^0}$ mixing (x,y) and CPV (q/p)

$$\begin{split} &|D^{0}(t)\rangle = g_{+}(t)|D^{0}\rangle + \frac{q}{\rho}g_{-}(t)|\overline{D^{0}}\rangle \\ &|\overline{D^{0}}(t)\rangle = \frac{\rho}{q}g_{-}(t)|D^{0}\rangle + g_{+}(t)|\overline{D^{0}}\rangle \\ &g_{+}(t) = \exp\left(-iMt - \frac{1}{2}\Gamma t\right)\cosh\left(-\frac{i\mathbf{x} + \mathbf{y}}{2}\Gamma t\right) \\ &g_{-}(t) = \exp\left(-iMt - \frac{1}{2}\Gamma t\right)\sinh\left(-\frac{i\mathbf{x} + \mathbf{y}}{2}\Gamma t\right) \end{split}$$

 Probabilities of changed or unchanged D flavor at time t for an initial pure flavor state $|D^0\rangle$

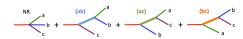
$$\begin{split} \left| \left\langle D^0 \middle| D^0 (t) \right\rangle \right|^2 &= \frac{1}{2} \mathrm{e}^{-\Gamma t} \left[\cosh (y \Gamma t) + \cos (x \Gamma t) \right] \\ \left| \left\langle D^0 \middle| \overline{D^0} (t) \right\rangle \right|^2 &= \frac{1}{2} \left| \frac{q}{\rho} \right|^2 \mathrm{e}^{-\Gamma t} \left[\cosh (y \Gamma t) - \cos (x \Gamma t) \right] \end{split}$$

y effects lifetime in amplitude; x: brings a sine oscillating.

▶ $D^0 - \overline{D^0}$ mixing measurement is most difficult.

Time-dependent Dalitz analyses in D⁰ three-body decays

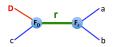
- ▶ Time-dependent Dalitz analysis(TDDA) provides an essential tool in studying $D^0 \overline{D^0}$ mixing. $\Gamma(D^0(t) \to f) \propto |\mathcal{A}_f|^2 e^{-t} \left(\frac{1 + |\lambda_f|^2}{2} \cosh(yt) - \text{Re}(\lambda_f) \sinh(yt) + \frac{1 - |\lambda_f|^2}{2} \cos(xt) + \text{Im}(\lambda_f) \sin(xt) \right)$
- ▶ An unique method: sensitive to linear order for both mixing parameters.
- ▶ Status of $D^0 \overline{D^0}$ mixing and *CP* violation measurement in D^0 three-body decays:


Decay Type	Final State	BELLE		ruch		CLEO	B€S III
DCS decay (WS)	$K^{+}\pi^{-}\pi^{0}$	✓ (a)	☆			√ A _{CP}	ο _δ
Self-conjugated CF	$K_S^0 \pi^+ \pi^-$	√	√	√	√ A _{CP}	√	ο _δ
decay	$K_{S}^{0}K^{+}K^{-}$	✓ (b)	√	0	•		ο _δ
Self-conjugated	$\pi^{+}\pi^{-}\pi^{0}$	✓ A _{CP}	✓ mixing A _{CP}	√ A _{CP}			ο _δ
SCS decay	$K^+K^-\pi^0$		√ A _{CP}				ο _δ
SCS decay	$K_S^0 K^+ \pi^-$			✓ A _{CP}		√ δ	\circ_{δ}
	$K_S^0K^-\pi^+$			√ A _{CP}		√ _δ	08

- \star for observation (> 5 σ); \star for evidence (> 3 σ); \checkmark for measurement published; \circ for analysis on going. The related publishments are linked under their corresponding signs.
- (a) Belle measured WS-to-RS ratio R_{WS} and A_{CP} in $D^0 \to K^\mp \pi^\pm \pi^0$ in PRL 95, 231801 (2005).
- (b) Belle measured y_{CP} in $D^0 \to K_c^0 \phi$ in PRD 80, 052006 (2009), the amplitude analysis for mixing parameters is on going.
- ▶ A neutral particle exists in the FSPs of all above channels, this possibly makes them more promising at Belle II than LHCb.
 - \Rightarrow TDDA will be one of favourites of Belle II Charm WG to measure $D^0 \overline{D^0}$ mixing and CPV in such D^0 three-body decays.

Dalitz analysis with Isobar model

- $P \rightarrow P_a P_b P_c$ decay: d.o.f=2 (i.e. m_{ab}^2 , m_{bc}^2)
- Isobar describes M: Phys. Rev. 123, 333 (1961)



$$\mathcal{M}(m_{ab}^2, m_{bc}^2) = a_{NR} e^{i\phi_{NR}} + \sum_r a_r e^{i\phi_r} \mathcal{A}_r(m_{ab}^2, m_{bc}^2)$$

here $a_r(\phi_r)$ is magnitude (phase) of resonance r

- T_r: dynamic function
 - 1) using relativistic Breit-Wigner (Γ depends on M)
 - 2) Special resonances description:
 - √ Flatté model, for mass threshold
 - i.e. $f_0(980)(KK)/a_0(980)(KK/\eta'\pi)$ [PRD 95, 032002 (2017)]
 - √ K-matrix model, for overlap resonances,
 - i.e. $\pi\pi$ S-wave [EPJ **A16** (2003) 229-258]
 - √ Gounaris-Sakurai model·
 - i.e. $\pi\pi$ P-wave ρ family [PRL 24,244(1968)]
 - / LASS model:
 - i.e. $K\pi$ S-wave with K_0^* (1430) [EPJ C74 (2014): 3026]
 - √ non-resonance:
 - i.e. const.(D decay) or exponential(B decay)

Also see Daniel's report on 16 July

• Matrix element A_r describes the dynamics of D o (r o ab)c PRD 63, 092001 (2001)

$$\mathcal{A}_r(m_{ab}^2, m_{bc}^2) = F_D \times F_r \times T_r \times W_r$$

- F_r, F_D form factor: [PR D 63, 092001 (2001)]
 - ▶ using Blatt-Weisskopt Barrier parameterization, depends on angular quantum ℓ (here equals J):

$$F_{J=0} = 1$$

 $F_{L-1} = \frac{\sqrt{1+z_r}}{r}$

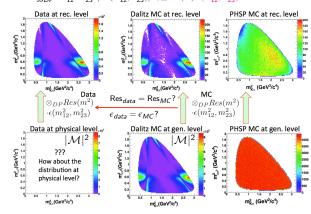
$$F_{J=1} = \frac{\sqrt{1+z_r}}{\sqrt{1+z_{ab}}}$$

$$F_{J=2} = \frac{\sqrt{(z_r - 3)^2 + 9z_r}}{\sqrt{(z_{ab} - 3)^2 + 9z_{ab}}}$$

$$F_{J=3} = \frac{\sqrt{(z_{ab}-3)^2 + 9z_{ab}}}{\sqrt{z_r(z_r-15)^2 + 9(2z_r-5)}}$$
$$\sqrt{z_{ab}(z_{ab}-15)^2 + 9(2z_{ab}-5)}$$

$$\sqrt{z_{ab}(z_{ab}-15)^2+9(2z_{ab}-5)}$$
here $z = (R \cdot q)^2$, R is radius of D or resonance r

- W_r angular function:
 - (1) Helicity form;
 - (2) Zemach covariant tensor form



(time-integrated) Dalitz analysis method

- probability density function of (time-integrated) Dalitz analysis:
- efficiency plane $\epsilon(m_{12,i}^2, m_{23,i}^2)$ to correct: obtained by a large signal MC produced at free PHSP.
- mass resolution Res(m) effect: needed to check if need? how to consider the resolution?
- normalization: numerical integration on full DP region

$$p_{\mathrm{sig}}(m_{12,i}^2,m_{23,i}^2) = \frac{|\mathcal{M}(m_{12,i}^2,m_{23,i}^2)|^2 \otimes_m \mathrm{Res}(m) \cdot \epsilon(m_{12,i}^2,m_{23,i}^2)}{\prod_{DP} dm_{12}^2 dm_{23}^2 dm_{23}^2 |\mathcal{M}(m_{12,i}^2,m_{23}^2)|^2 \otimes_m \mathrm{Res}(m) \cdot \epsilon(m_{12,i}^2,m_{23}^2)}$$

Time-dependent Dalitz analysis

- p.d.f of signal for TDDA:
 - (1) efficiency plane $\epsilon(m_{12,i}^2, m_{23,i}^2)$ and mass resolution Res(m), similar with TIDA.
 - (2) time resolution Res(t) effect: usually based on data.
 - (3) normalization: numerical integration on full t-dept DP region.

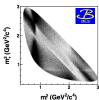
$$p_{\text{sig}}(m_{12,i}^2, m_{23,i}^2, t_i) = \frac{1}{N} \int dt' R_{\text{sig}}(t_i - t', k\sigma_t^i) \left| \mathcal{M}(m_{12,i}^2, m_{23,i}^2, t') \right|^2 \otimes_m \text{Res}(m) \cdot \epsilon(m_{12,i}^2, m_{23,i}^2)$$

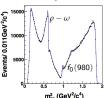
Method: Unbinned Maximum Likelihood (UML) and consideration of Punzi bias $2 \ln \mathcal{L} = 2 \sum_{i}^{n} \{\ln(f_{\text{sig}}^{i} p_{\text{sig}}(m_{12,i}^{2}, m_{23,i}^{2}, t_{i}, k\sigma_{t}^{i}; \mathbf{x}, \mathbf{y}, \mathbf{q}/p) p_{\text{sig}}^{c}(\sigma_{t}^{i}) + \sum_{\mathbf{x} = \mathbf{bg}} f_{\mathbf{x}}^{i} p_{\mathbf{x}}(m_{12,i}^{2}, m_{23,i}^{2}, t_{i}) p_{\mathbf{x}}^{nc}(\sigma_{t}^{i}))\}$ here $p_{\mathbf{x}}^{nc}(\sigma_{t}^{i})$ is a function of global time error function, independed on other variables

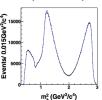
Belle experiment to Belle II experiment

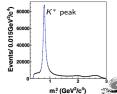
Self-conjugated decay $D^0 o K_s^0 \pi^+ \pi^-$

- TDDA in D⁰ self-conjugated decays:
 - (1) direct measurement for x and y; (2) search for CPV: $q/p \neq 1$ $|\mathcal{M}(f,t)|^2 = \frac{e^{-\Gamma}t}{2}[(|\mathcal{A}_f|^2 + |\frac{a}{n}|^2|\mathcal{A}_{\bar{f}}|^2)\cosh(y\Gamma t) + (|\mathcal{A}_f|^2 - |\frac{a}{n}|^2|\mathcal{A}_{\bar{f}}|^2)\cos(x\Gamma t) + 2\operatorname{Re}[\frac{a}{n}\mathcal{A}_{\bar{f}}\mathcal{A}_{\bar{f}}^*]\sin(y\Gamma t) + 2\operatorname{Im}[\frac{a}{n}\mathcal{A}_{\bar{f}}\mathcal{A}_{\bar{f}}^*]\sin(x\Gamma t)]$
- $D^0 o K_s^0 \pi^+ \pi^-$ with qusai-two-body decays with difference physics process:


Right-Sign:
$$\mathcal{A}_f = \langle f | \mathcal{H} | D^0 \rangle$$
; $\frac{q}{\rho} \frac{\tilde{A}_f}{A_f} = \left| \frac{\tilde{A}_f}{A_f} \right| \frac{1-\epsilon}{1-\epsilon} e^{i(\delta+\phi)}$; eg: $D^0 \to K^{*-}\pi^+$ etc. Wrong-Sign: $\mathcal{A}_{\tilde{f}} = \langle \tilde{f} | \mathcal{H} | D^0 \rangle$; $\frac{q}{\rho} \frac{\tilde{A}_f}{A_f} = \left| \frac{\tilde{A}_f}{A_f} \right| \frac{1-\epsilon}{1+\epsilon} e^{-i(\delta-\phi)}$; eg: $D^0 \to K^{*+}\pi^-$ etc.


CP-even: $A_+ = \langle +|\mathcal{H}|D^0\rangle$ $\frac{q}{n}\frac{\overline{A}_+}{A_-} = +\frac{1-\epsilon}{1+\epsilon}e^{+i\phi};$ eg: $D^0 \to K_S^0 f_0$ etc.


CP-odd: $A_- = \langle -|\mathcal{H}|D^0 \rangle$ $\frac{q}{a} \frac{\overline{A}_-}{A} = -\frac{1-\epsilon}{1-\epsilon} e^{-i\phi};$ eg: $D^0 \to K_S^0 \rho / K_S^0 \omega$ etc.

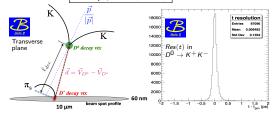


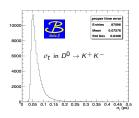
- Review of Belle's result of TDDA in this decay [PRD 89, 091103(R) (2014)]
 - D^0 flavor is tagged via the charge of slow π_s from $D^{*+} \to D^0 \pi_s^+$.
 - Dalitz variables $m_-^2 = m_{K_0^0\pi^-}^2$, $m_+^2 = m_{K_0^0\pi^+}^2$ for D^0 , exchange for $\overline{D^0}$.
 - Dalitz Model: 12 RBW+K-matrix($\pi\pi$ S-wave)+LASS($K\pi$ S-wave).

Dataset size effect on TDDA in $D^0 o K_s^0 \pi^+ \pi^-$

- Results of TDDA based on 921 fb $^{-1}$ of data at Belle [PRD 89, 091103(R) (2014)]
 - ightharpoonup a consistent determination of $D^0 \overline{D^0}$ mixing with significantly improve sensitivity.
 - the most accurate value of CPV parameters |q/p| and arg(q/p).

- Prospects at Belle II with larger dataset: $\sigma_{Belle\ II} = \sqrt{(\sigma_{stat}^2 + \sigma_{sys}^2) \frac{\mathcal{L}_{Belle}}{50 \text{ ab}^{-1}} + \sigma_{irreducible}^2}$
- a significantly improved σ_{stat} ; Dalitz model uncertainty will dominate the errors.
 - ⇒ model-indept. Dalitz analysis will be more promising in this channel.


Fit type	Para.	Belle Fit result Belle II prospect		prospect	model-indept.	LHCb
Tit type	ı aıa.	921 fb ⁻¹	5 ab ⁻¹	50 ab ⁻¹	100 M signals	$50 \ fb^{-1}$
No CPV	×(%)	$0.56 \pm 0.19^{+0.03+0.06}_{-0.09-0.09}$	$\pm 0.08 \pm 0.11$	$\pm 0.03 \pm 0.11$	± 0.017	
NO CF V	y(%)	$0.30 \pm 0.15^{+0.04+0.03}_{-0.05-0.06}$	$\pm 0.06 \pm 0.05$	$\pm 0.02 \pm 0.04$	± 0.019	
indirect	×(%)	$0.56 \pm 0.19^{+0.04+0.06}_{-0.08-0.08}$	$\pm 0.08 \pm 0.11$	$\pm 0.03 \pm 0.11$		0.04
mairect	y(%)	$0.30 \pm 0.15^{+0.04+0.03}_{-0.05-0.07}$	$\pm 0.06 \pm 0.05$	$\pm 0.02 \pm 0.04$		0.004
CPV	q/p	0.90+0.16+0.05+0.06	$\pm 0.069 \pm 0.073$	$\pm 0.022 \pm 0.069$		0.04
CIV	$arg(q/p)(^{\circ})$	$-6 \pm 11 \pm 3^{+3}_{-4}$	$\pm 4.7 \pm 4.2$	$\pm 1.5 \pm 3.8$		3



Improved D^0 lifetime resolution at Belle II

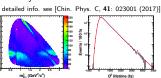
- Time resolution is essential in time-dependent measurements of D^0 - $\overline{D^0}$ mixing and CPV.
 - such as the time-dependent amplitude of $D^0 \to f$ (here $t[\tau_{D^0}]$ and $\lambda_f = \frac{q}{p} \frac{\lambda_f}{A_f}$): $\Gamma(D^0(t) \to f) \propto |A_f|^2 e^{-t} \left(\frac{1+|\lambda_f|^2}{2} \cosh(yt) \text{Re}(\lambda_f) \sinh(yt) + \frac{1-|\lambda_f|^2}{2} \cos(xt) + \text{Im}(\lambda_f) \sin(xt) \right) \otimes_t \text{Res}(t)$
- D⁰ lifetime: and σ_t by error matrix of vertex fits and momentum.

- Based on MC study, D^0 lifetime resolution Res(t) \approx 140 fs: half of BaBar's (270 fs)
- Time error σ_t : 1/3 of BaBar's; and RMS(σ_t) reduced by half.
 - resolution function $g(t) = Gauss(\mu, k\sigma_t)$, reduced RMS(σ_t) (higher weight in the fit) results in an increased statistics

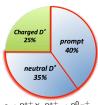
Time resolution effect on TDDA in $D^0 \rightarrow K^+\pi^-\pi^0$

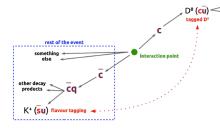
▶ TDDP fit on $D^0 \to K^+\pi^-\pi^0$ WS decays to extract mixing par. $(x''/r_0, y''/r_0)$

 $|\mathcal{A}_{\tilde{\ell}}|^2 = \left[|\mathcal{A}^{\textit{DCS}}_{\tilde{\ell}}|^2 e^{-\Gamma t} + \frac{(x^2 + y^2)}{4r_0^2}|\tilde{\mathcal{A}}^{\textit{CF}}_{\tilde{\ell}}|^2 (\Gamma t)^2 e^{-\Gamma t} + \left(\frac{y''}{r_0} \text{Re}[\mathcal{A}^{\textit{DCS}}_{\tilde{\ell}}\tilde{\mathcal{A}}^{*}^{\textit{CF}}_{\tilde{\ell}}] + \frac{x''}{r_0} \text{Im}[\mathcal{A}^{\textit{DCS}}_{\tilde{\ell}}\tilde{\mathcal{A}}^{*}^{*}^{\textit{CF}}_{\tilde{\ell}}]\right) (\Gamma t) e^{-\Gamma t}\right] \otimes_t \textit{Res}(t)$ where $x'' = x \cos \delta_{K\rho} + y \sin \delta_{K\rho}$, $y'' = y \cos \delta_{K\rho} - x \sin \delta_{K\rho}$, $r_0 = |A^{CF}|/|A^{DCS}|$



- BaBar performed TDDA with 384 fb $^{-1}$: $x'' = (2.61^{+0.57}_{-0.68} \pm 0.39)\%, \ y'' = (-0.06^{+0.55}_{-0.64} \pm 0.34)\%$
 - \Rightarrow the first evidence to veto the hypothesis of no $D^0 \overline{D^0}$ mixing in D^0 multi-body decays.
- ▶ ToyMC: smear exponential lifetime with Gauss(σ =140 fs) to consider the improved time resolution at Belle II: without considering backgroud effects.
- ▶ Sensitivity estimation: one order of magnitude improvement than BaBar





A new D^0 -tag method at Belle II: ROE method

- To measure CPV, the flavor of *D* is needed to be determined efficiently.
- At B-factories, the charge of π_s from $D^{*+} \to D^0 \pi_s^+$ is used to tag the flavor of D^0 and D^0 mesons from B decays are excluded. \Rightarrow only D^0 from $D^{*\pm}$ in $c\bar{c}$ events (25%) were used.
- To utilize another charm meson decay is the essential idea of ROE.
- ROE method: select events with only one K^{\pm} in the Rest Of Event;
- Using the charge of this K^{\pm} in ROE to determine the flavor of D^0 .

$$\begin{array}{l} c\bar{c} \rightarrow D^{*+}X, \ D^{*+} \rightarrow D^0\pi_s^+ \\ c\bar{c} \rightarrow D^{*0}X, \ D^{*0} \rightarrow D^0\pi^0/D^0\gamma \\ c\bar{c} \rightarrow D^0D^-X/D^0\bar{\Lambda}_c^-X \end{array}$$

$$\frac{N_{tag}^{0}}{N_{tag}^{*}} = \frac{\epsilon_{tag}^{0}}{\epsilon_{tag}^{*}} \cdot \frac{N_{gen}^{0} + (1 - \epsilon_{tag}^{*}) \cdot N_{gen}^{*}}{N_{gen}^{*}} \sim 1$$

here $\epsilon_{tag}^*(\epsilon_{tag}^0)$: tagging efficieny of $D^*(\mathsf{ROE})$ method with $80\% (\leqslant 20\%)$. $N_{gen}^*(N_{gen}^0)$: number of D^0 produced by a D^* (other $c\bar{c}$ event) with $N_{gen}^*: N_{gen}^0 \simeq 1:3$

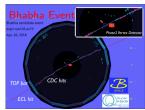
A reduction of \sim 15% of $\sigma(\textit{stat})$ on $A_\textit{CP}$

an additional D^0 sample via ROE method will be available and optimistic.

Outline

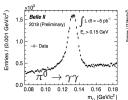
- Belle experiment to Belle II experimen
 - Accelerator and Nano-beam
 - Detector and its highlights
 - Data set and Collaboration
- Prospects of TDDA on charm at Belle II
 - $D^0 \overline{D^0}$ mixing and CP violation
 - Time-dependent Dalitz analysis
 - Prospect of TDDA in $D^0 o K_S^0 \pi^+ \pi^-$
 - ullet Prospect of TDDA in $D^0 o K^+\pi^-\pi^0$
 - A new D⁰-tag method: ROE method
- 3 Re-discoveries of Phase2 at Belle II
- Summary

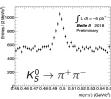
Summary

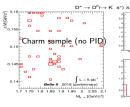

Some 'first' events and re-dicoveries with first data

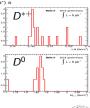
First collision and 'First' events

Belle experiment to Belle II experiment

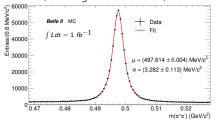


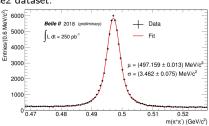






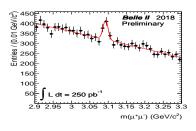
• First data (5 pb⁻¹) gave evidences of π^0/K_S^0 /charm. Calibrations at a very early stage.

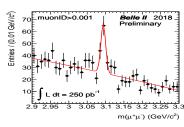


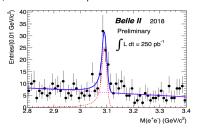


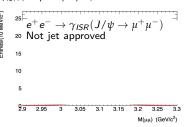
K_S^0 invariant Mass

- Belle II has already finished Phase 2 on Jul 17 with ~xxx pb⁻¹ (wait official statement).
- Some approval plots on up to 250 pb⁻¹: with requirement of at least tree tracks from the IP region, while rejecting beam included background, Bhabha events and other low multiplicity background sources.
- \bullet for example of $K^0_{\rm S} \to \pi^+\pi^-$ with partial Phase2 dataset.

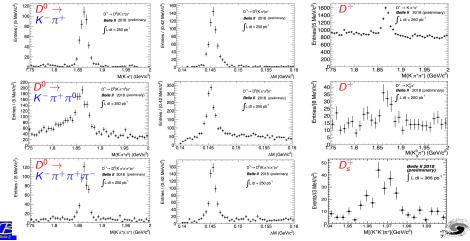


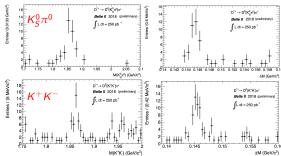

- K_s^0 mass resolutions within a few % of what expected by the simulation.
- Tracking efficiency measurements are ongoing.



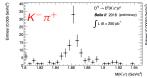

• re-discovery of $J/\psi \to \mu^+\mu^-$ in 250 pb⁻¹ of Phase 2 data w/o and w/ muonID.

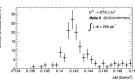
• other processes, like $J/\psi \to e^+e^-$ and $e^+e^- \to \gamma_{ISR}(J/\psi \to \mu^+\mu^-)$.




Re-discovery: charm sample with definite flavor

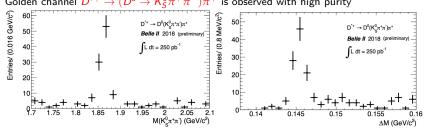
- Each $c\bar{c}$ event at B-factories has averaged $\bar{N}(D^0)=1.119\pm0.007,\ \bar{N}(D^+)=0.595\pm0.005,\ \bar{N}(D_s^+)=0.195\pm0.003.$
- D^0 CF decays $K\pi$, $K\pi\pi^0$ and $K\pi\pi\pi$ with flavor tagged, and $D^+_{(s)}$ are observed.




Re-discovery: D^0 sample in other channels

• in D^{*+} sample: CP eigenstate decays of $D^0 \to K_S^0 \pi^0$ (CF) and $D^0 \to K^+ K^-$ (SCS) are observed.

• In D^{*0} sample: $D^0 o K^-\pi^+$ is observed.



Belle experiment to Belle II experiment

Re-discovery: charm sample

Belle experiment to Belle II experiment

• Golden channel $D^{*+} \to (D^0 \to K_S^0 \pi^+ \pi^-) \pi^+$ is observed with high purity

• what is the future with full Belle II dataset $(\times 40,000)$ for this channel? most precise result on D^0 - $\overline{D^0}$ mixing? observation CPV in charm?

- Belle experiment to Belle II experimen
 - Accelerator and Nano-beam
 - Detector and its highlights
 - Data set and Collaboration
- Prospects of TDDA on charm at Belle II
 - $D^0 \overline{D^0}$ mixing and CP violation
 - Time-dependent Dalitz analysis
 - Prospect of TDDA in $D^0 o K_S^0 \pi^+ \pi^-$
 - ullet Prospect of TDDA in $D^0 o K^+\pi^-\pi^0$
 - A new D⁰-tag method: ROE method
- Re-discoveries of Phase2 at Belle I
- Summary

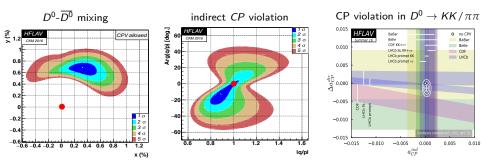
Summary

- Belle II is back to the game after eight year passed since Belle shut down.
- Belle II will have a rich charm physics program ahead. TDDA will become one of favourites of Belle II charm WG to study $D^0 - \overline{D^0}$ mixing and CP violation in many multi-body decays.
- Considering 50 times dataset and half of D^0 lifetime resolution at Belle II, two sensitivity estimations in TDDA are presented:
 - Prospect in $D^0 o K_c^0 \pi^+ \pi^-$: factor 3 improved, and Dalitz model will dominate the errors.
 - Prospect in $D^0 \to K^+\pi^-\pi^0$: one order of magnitude improved w/o considering the bkg effects.
 - more decay channels will contribute $D^0 \overline{D^0}$ mixing and CPV via TDDA benefiting from improved performances and a large date set.
- ROE D^0 tagging method is presented: provides an additional tagged D^0 sample.
- Phase2 has finished, some re-discoveries with 250 pb⁻¹ are shown, especially charm sample in many channels.
- Phase3 operation (physics run) with full Belle II detector will start next spring.
- Looking forward to charming news on charm physics via TDDA.

Back up

Thank you for your attention.

谢谢!


Longke LI (李龙科) Room B413, Main Building Institute of High Energy Physics, CAS (IHEP) 19B, Yuquan Road, Shijingshan District Beijing City, 100049, P. R. China

- (+86)-159-5693-4447
- lilongke_ustc
- lilongke@ihep.ac.cn

Status of D^0 - $\overline{D^0}$ mixing and CP violation [mainly ref. charm physics at HFLAV]

- $\gg 11.5\sigma$ to exclude no mixing (x,y)=(0,0) with CPV-allowed
- No hints for indirect CPV \leftarrow no direct CPV $(|q/p|, \phi) = (1,0)$ at C.L=40%
- No clear evidence of direct CPV \Leftarrow no CPV at C I = 9.3%

 $\overline{D^0}$ - $\overline{D^0}$ mixing observation in more channels, and CPV searches are two of most important physical goals for Charm WG at our Belle II experiment.

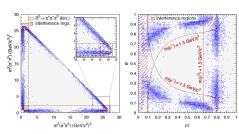
description of angular function W_r

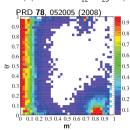
Helicity form: [Phys. Rev. D 78, 052001 (2008)]
 easily understood, but need many Lorantz transform, take much time on calculation

$$\begin{array}{ll} \mathcal{A}_r = F_D \times F_r \times T_r \times \left(|p|^J|q|^J P_J(\cos\theta_H^r)\right) \\ W_r(J=0) = 1 & \propto const. \\ W_r(J=1) = -2(\vec{p} \cdot \vec{q}) = -2|p||q|\cos\theta_H & \propto \cos\theta_H \\ W_r(J=2) = \frac{16}{3}|p|^2|q|^2(3\cos^2\theta_H - 1) & \propto \cos^2\theta_H \end{array}$$

(2) Zemach covariant tensor form: [Phys. Rev. 133, B1201 (1964), Phys. Rev. 140, B109 (1965)] difficult to understand, usually only used in spin-0 final state particles, but take less time in calculation

$$\begin{split} W_r(J=0) &= 1 \\ W_r(J=1) &= m_{ac}^2 - m_{bc}^2 + \frac{(M_D^2 - M_D^2)(M_D^2 - M_S^2)}{M_c^2} \\ W_r(J=2) &= \left[m_{bc}^2 - m_{ac}^2 + \frac{(M_D^2 - M_C^2)(M_S^2 - M_D^2)}{M_c^2} \right]^2 - \frac{1}{3} \left[m_{ab}^2 - 2M_D^2 - 2M_C^2 + \frac{(M_D^2 - M_C^2)^2}{M_c^2} \right] \times \left[m_{ab}^2 - 2M_B^2 - 2M_D^2 - 2M_C^2 + \frac{(M_D^2 - M_C^2)^2}{M_c^2} \right] \\ &= \frac{1}{3} \left[m_{ab}^2 - 2M_D^2 - 2M_C^2 + \frac{(M_D^2 - M_C^2)^2}{M_c^2} \right] \times \left[m_{ab}^2 - 2M_B^2 - 2M_D^2 - 2M_D^2 + \frac{(M_D^2 - M_C^2)^2}{M_c^2} \right] \\ &= \frac{1}{3} \left[m_{ab}^2 - 2M_D^2 - 2M_C^2 + \frac{(M_D^2 - M_C^2)^2}{M_c^2} \right] \times \left[m_{ab}^2 - 2M_D^2 - 2M_D^2 - 2M_D^2 + \frac{(M_D^2 - M_C^2)^2}{M_c^2} \right] \\ &= \frac{1}{3} \left[m_{ab}^2 - 2M_D^2 - 2M_C^2 + \frac{(M_D^2 - M_C^2)^2}{M_c^2} \right] \times \left[m_{ab}^2 - 2M_D^2 - 2M_D^2 - 2M_D^2 + \frac{(M_D^2 - M_C^2)^2}{M_c^2} \right] \\ &= \frac{1}{3} \left[m_{ab}^2 - 2M_D^2 - 2M_D^2 - 2M_C^2 + \frac{(M_D^2 - M_C^2)^2}{M_c^2} \right] \times \left[m_{ab}^2 - 2M_D^2 - 2M_D^2$$

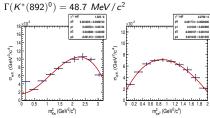


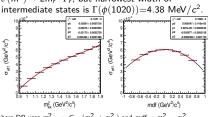

Square Dalitz Plot Method

- In Dalitz analyses od B meson decays, the cared interference region is usually concentrate on the marginal area (left figure).
- To avoid the variation of efficiency plane in one bin, a better Dalitz plot region with better resolution is needed.
- It can also efficiently describe efficiency plane or background distribution on Dalitz plot, such as misidentified background in $B \to K\pi\pi^0$ (right figure).
- Expanded Dalitz plot plane $[0,1] \times [0,1]$: square Dalitz Plot (SDP) [PRD 72, 052002 (2005)]

$$\bullet \ \ m' = \tfrac{1}{\pi}\arccos\left(2\tfrac{m_{ab}-m_{ab}^{min}}{m^{m_{ab}}-m_{ab}^{min}}-1\right) \in [0,1] \qquad \ \theta' = \tfrac{1}{\pi}\theta_{ab} \in [0,1]$$

• where $m_{ab}^{max} = M_B - m_c$, $m_{ab}^{min} = m_a + m_b$, Jacobian determinant |J| meets: $dm_{12}^2 dm_{23}^2 = |J| dm' d\theta'$





Mass resolution problem in Dalitz analysis

• In $D^0 o K^+ \pi^- \pi^0$, Dalitz resolution meets $\sigma(m^2) \ll 2m_r \cdot \Gamma_r$, but narrowest width of intermediate states is $\Gamma(K^*(802)^0) = 48.7 \text{ MeV}/c^2$

• In $D^0 o K_S^0 K^+ K^-$, Dalitz resolution meets $\sigma(m^2) \sim 2m_r \cdot \Gamma_r$, but narrowest width of intermediate states is $\Gamma(\phi(1020)) = 4.38$ MeV

here DP uses
$$m_{KK}^2 = C - (m_+^2 + m_-^2)$$
 and $mdf = m_+^2 - m_-^2$

- Strictly speaking, a convolution is needed on whole region of DP to consider the resolution effects: a time-consuming challenge for CPU.
- A discretization of convolution via a grid weight method: decide grid size by resolution, and use averaged value of around grid points with weight $W_{ij} = e^{-(i^2+j^2)/2}$, the normalized form is as follows:

$$pdf_{\textit{resol}}(x,y) = \sum_{l=-3,j=-3}^{3,3} pdf\big(x + l\sigma_{x}, y + j\sigma_{y}\big) \cdot W_{lj} \ / \sum_{l=-3,j=-3}^{3,3} W_{lj}$$

Efficiency difference between data and MC

- To consider the difference of particle identification(PID) efficiency between data and MC, a data-driven efficiency plane is applied.
- Obtain a 2D table of the ratio of each charged particles' PID efficiency between data and MC, dependent on various particles' momentum and PID requirement.
- re-weight each event in reconstructed DP according its momentum, PID requirement and above ratio value, then obtain the data-driven efficiency plane by the ratio of corrected rec. DP plane to gen. DP plane.

