Bundesministerium
% fiir Bildung (D
und Forschung QD

Belle IT

The Belle Il Analysis Framework

PyHEP 2018 Workshop — Sofia, Bulgaria

Thomas Hauth for the Belle Il Collaboration
Institute of Experimental Particle Physics (ETP), KIT, Germany

KIT — University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

http://www.kit.edu

The Belle Il Experiment and its Goals

a KEKB was an electron-positron collider at KEK in Tsukuba/Japan which
studied the decay of B mesons at the Y(4S) resonance

a Nobel Prize in Physics 2008 to Kobayashi and Maskawa
a The SuperKEKB collider and the Belle Il detector will build on the previous

success:

m Study the B meson system in far greater precision
m Probe for new physics in a wide range of interesting topologies
m Spectroscopy of Quarkonium systems

m The Belle Il Collaboration: 756 members from 104 institutes in 25 countries

KEKB Super KEKB Factor
Instantaneous Luminosity | 2 x 10%*ecm=2s~' | 8 x 10¥ cm~2s~" | 40
Integrated Luminosity 1ab™’ 50ab~’ 50
Runtime 1998 to 2010 start in 2017
Detector Belle Belle Il
Raw Data 1PB 100 PB (projected) | 100

12 October 2016

2/24

Belle Il Detector
KL and muon detector:

Resistive Plate Counter (barrel)
LSF + MPPC (end-caps)

=Scintillator

agation counter (barrel)
g Aerogel RICH (fwd)

EM Calorimeter:
Csl(Tl), waveform samp
waveform sa

Csl(Tl),

electron (7GeV)

positron (4GeV)

/i

2cm diameter
Vertex Detector ////
2 layers DEPFET + 4 layers

Central Drift Chamb

He(50%):C2Hs(50%), S
lever arm, fast electronics

Iong==

/)/’/};/;I;;/n

W\

A

mall ce

12 October 2016

3/24

First Collisions !

One of the first hadronic events recorded with the Belle Il Detector at 2:27 a.m.
JST on the 26th April 2018

... not much python involved here, sorry ...

12 October 2016 4/24

The basf2 Framework
Mainly written from scratch using experiences from Belle and other experiments
m utilizes new technologies: C++14 (GCC 7.3), ROOT 6, Geant 4.10, Python 3.6

Python 3 as steering/scripting language

m ROOT for input/output (also raw data)

m parallel processing support using fork

Framework Design:

m Modules are individual units of processing and use a common data store to read event
data and write back results (not to be confused with python modules)

m All processing steps for recorded and simulated events are implemented in basf2:
Event generation, simulation, digitization, online trigger, reconstruction and analysis

= Important libraries are bundled into externals: ROQOT, gcc, Geant4, ...

software modules path
/
software modules
data flow 4 N
{ H'"4X4 BO— H H > dataflow
r kill shared memory buffer
conditions input workers output

(single processing) | (multi processing) (single processing)

12 October 2016 5/24

Python usage in the basf2 Framework

a python 3.6.1 included in the externals of our framework - ensures the
same modern python environment on all supported platforms (even Scien-
tific Linux 6)
Python is a first-class citizen in our framework:
m Steering files connect modules to paths and are written in Python 3
a Framework Modules can be written in C++ and Python
a Framework functionality is exported to Python via boost: : python

a User classes and all objects within the framework’s DataStore are available
in Python via PyROOT

12 October 2016 6/24

Python Steering files

Steering files configure the execution modalities (which calbration database to
use etc.) and the modules executed for each event:

main = create_path()

5pec1fy number of events to be generated

main.add _module(EventIs er', evtNumList=[1000], runList=[1], expList=[0])
generate EBbar events
main.add module(' EviGenInput')
detector 51mulat10n
add_simulation(main, bkgfiles=get_background files{))
trigger simulation

add_tsim(main)

reconstruction

add reconstruction(main)

memory profile

main.add module(Profile’)

output
main.add module(

outputFlleName— oS
process(main)

12 October 2016 7/24

Python Modules

Python modules use the same entry methods as our C++ modules (beginRun(),

event () for each processed event etc.)
class CheckRelationBremClusterTestModule(Module):

clusters = Belle2.PyStoreArray("cCLC
bremCluster = None

for cluster in clusters:
if cluster.isTrack():
this is the primary cluster of the electron
is there a relation to the se(ondaly brem (luster 7
bremCluster = cluster.getRelated("F ers")

assert(bremCluster)

Python modules can be added to the processing path as easy as C++ modules:

reconstruction.add reconstruction(main path)
C++ module
main_path.add module("F

python module
main_path.add_module(CheckRelationBremClusterTestModule())

12 October 2016 8/24

le")

Jupyter Notebooks

Jupyter inherits all benefits available to Python in our framework, plus:
a Notebooks
m Save expressions and corresponding results in one place
a Include comments, documentation, pictures, drawings, I8TEX, videos
m Send notebooks, including all results, to someone else (use-cases: software
examples, bug reports)
m Perform analyses interactively
a Clickable widgets in HTML and JavaScript
a Sections of a notebook can be executed individually
a Tab-completion and syntax highlighting
a Server—client structure
m Access the Jupyter service from your home computer, smartphone, tablet, etc.

but run the calculations on a high-performance machine
= No need to rely on X forwarding or other technologies

Many data science tools with Jupyter integration: ROOT, matplotlib, pandas
Not only for Python (Haskell, Julia, C++, ROQOT, Terminal)

12 October 2016 9/24

Under the Hood: Integrating basf2

We developed the Python library hep_ipython_tools [1] which simplifies
the integration of HEP Frameworks with jupyter notebooks.

Core component for seamless Jupyter integration of basf2:
Process handler for background framework execution

m Creates a separate worker process for basf2

Transfers path configuration and starts processing

Monitors running framework process

Installs a message queue between jupyter and basf2 processes to transfer
status information (current event number, performance statistics etc.)

a Can support multiple basf2 Instances to concurrently scan a parameter
space

a Implementation is generic and can be easily adapted to support other
frameworks

12 October 2016 10/24

Better User Experience: Widgets

a Jupyter Widgets are graphical exentsions to notebooks to better view
use-case specific contents

a Written in Python and JavaScript, running interactively in the user’s browser

a Allows to use rich library ecosystem of Python and web-development world
(jQuery, HTMLS5, CSS etc.)

We developed a set of Jupyter widgets to improve the user experience of
basf2 in Notebooks

Progress Bar
e
Status: finished

85 % Remaining time: 2.04 s

30 % Remaining time: 26.92 s

[won

12 October 2016 11/24

Better User Experience: Widgets

Collection Viewer

In (21: | calculations. show_collections()

Process0 Process1 Process 2
Event0 Eventl Eventz Event3 Event7 Events Events
BeamBackHts 2

ccEBSImbts o

cocHis s

COCHIsATIg 659

cocsimbits a1

MCParicies EY

Log Parser

In (3]: calculations.show_log()

Process0 | Processl Process2

Hide RESULT Show WARNING Hide DEFAULT

L Hidel

Hide DEBUG Hide ERROR Hide FA

[RESULT] Starting event processing, random seed is set o
message repeated 1 tmes

[NFO] o oe under global tag production
[INFO] Found fl: ¥ rev. correct

[INFO] Creating geomery for detector: Belle2Detector

[INFO] Creating Material Config Vacuum

[INFO] Creating Material Config CDCGas

[INFO] Creating Material Config STR-HDPE.

[INFO] Creating Material Config STR-PEB03

12 October 2016 12/24

basf2 + Python + Jupyter + Hub = Epic Training

The Belle |l collaboration hosts a Jupyterhub instance for all it's members:
https://jupyterhub.belle2.org/

Main purpose of this instance is for training workshops we hold at least 3 times
per year.

a Each participant gets the correct software version with zero hassle (we use
Jupyterhub’s docker spawner and our externals and framework in a Docker
image)

a The Notebook contain explanations, instructions and code fragments in one
place: solves problem of disconnect between documentation and code.

12 October 2016 13/24

https://jupyterhub.belle2.org/

Juypterhub Training

c @ @ & https://jupyterhub.belle2.org/use RO A d Search omnoro»

B2T_Basics_2_FirstAnalysis @ucsaveq) A Logout | GControl Panel
Fle Edt View Insert Cell Kemel g Help Trusted | Bython 2 (Belle2) ©
B+ 3 6 B 4 ¥ MR B C W coke o=

Mg e i 1 e a1 g T (R AT E (8] S TN 1 M1 a e

Agaln we use convenience function "add_simulation" from a python-module called simulation. This function
automatically adds all modules necessary to simulate the whole detector. We will see which modules where
added later. After the simulation, the output information looks exactly the same as from a later "real”
experiment - except that we now have the correct MC information also.

In []: from simulation import add_simulation
add_simulation(path)

Reconstruction

Now we reconstruct Tracks (PXD, SVD, CDC), Clusters (ECL. KLM) and PID information (TOP. ARICH) from
the simulated hits and energy depositions in the detector using the simulation data. The same code is used
to process "real" data from the experiment as well

An important part of the reconstruction is the so-called tracking. Hits from the PXD, SVD and CDC are
combined to tracks. The Karlsruhe Belle Il group Is strongly involved in finding and fitting all tracks in an
event, while rejecting background hits (e.g. from beam-background). Most of the cpu time during
reconstruction Is spent doing tracking.

In this tutorial we just use the convenience function "add_reconstruction" which adds all modules necessary
to reconstruct the whole event. See the tracking tutorial for more information on that.

In []: from reconstruction import add reconstruction
add_reconstruction(path)

12 October 2016 14/24

Juypterhub Training

Over the last year, we have compiled Notebooks to a Belle Il Starterkit which we
can use during Training Workshops or people can use on their own time.
Currently, the following topics are covered:

a Basic Python usage

m Writing basf2 steering files (event generation, simulation and reconstruction)
a Analysis of ROOT N-Tuples with pandas

a Plotting with pandas and matplotlib

a Usage of basf2’s multi-variate tools for analysis

a Flavor Tagger and Continuum Suppression in user analysis

Very positive feedback from the two workshop we had so far from participants.
Nota Bene: We also explain how to use basf2 without jupyter notebooks, some
users prefer this.

12 October 2016 15/24

Python and First Collision Results

Fast feedback to the SuperKEKB-Accelerator group is important during the early
commissioning phase of the accelerator.

One novel feature to achieve the 40 times higher luminosity is the nano-beam
scheme which allows for a very strong focusing at the beam interaction point up
to 10um (20 times smaller than KEKB)

KEKB Interaction region beam SuperKEKB Interaction region
overlap beam overlap

Source: Study of the collision point properties. N.Braun et al.[2]

12 October 2016 16/24

Python and First Collision Results

—_ T T T
£ Belle Il 2018 (preliminary)
Y 3000 |-) 1
— Median=-0.015cm
o +
S 2500 | 06a=0.055cm v
7 2000 o E
o ¢+ Runs1869-2047
i 1500 1
[=
w
1000
500 [s
[Ldt=24pb=t . .
0 i —_ 1 e ke L
-0.4 -0.2 0.0 0.2 0.4

zo [em]

Figure: Longitudinal component of the interaction vertex estimated using single tracks
originating from the interaction vertex in early Belle Il events.[2]

Workflow:
a Event-reconstruction with basf2
a Python-based analysis running as module in basf2 writes ROOT NTuples
a Using the root_pandas library to load the NTuples as into one pandas dataframe
m Additional selections using the pandas Dataframe
a Final plotting with matplotlib and custom Belle Il style configuration

Within days of first data, we were able to generate publication quality plots.
12 October 2016 17/24

Python and First Collision Results

In the first weeks of data-taking, many more plots for publication have been
created using either ROOT plotting, matplotlib and pandas

x10°
£ T Belle Il -
3 fl S 15F f —spp’
Ssoo00 - Belled MC 1"\ —+ Data g 2018 (Preliminary) | 1IL°(Spo
S IR - ¢t | E>015GeV
5
Fooo [8 1o D]
5 | \ = —Data ' ‘
30000 \ 1= (497,614 £0.004) MeV/c™ E K !
200001 Kn:[ﬁZBZ:B,HJJMeV:z £ osf e \«'-‘.WM"'-'
i\ & [i
10000, L
ook . \ . \ .
G47 o4s 048 05 051052 008 010 012 014 016 0.18
i) (GaV ey
(e VA B =
T E T T T M e :
é 1201~ D's DKnanhe S
5 100 + Belle 1 2018 (preimnay) -
@ F Ldt=250pb" z
& 8o + j P -
§ 6o E
40F +
200 + N -
b ittt b T b e
278 18 1.85 19 1.95

M(Kwwn) (GeVic? e
Underlines the flexibility and efficiency of user analyses options available in the
the Belle Il software ecosystem.

https://docs.belle2.org/search?cc=Belle+II+Notes+43A+Plots

12 October 2016 18/24

https://docs.belle2.org/search?cc=Belle+II+Notes+%3A+Plots

Wishlist for better Python @ HEP

a Python 3 compatibility checked as part of the ROOT release procedure
Currently, we have to patch some things ourselves before building ROOT,
but they are in the ROOT repository now.

a Some ROOT-based libraries are difficult to use from python (for
example RooFit) due to conceptual differences how python handles
object lifetime
This results in weird side-effects which are hard to understand for the
average user.

a More common development effort on HEP-tools, specifically for Python
The scikit-hep project is a good start
We also should work more to "enrich” existing python data analysis tools like
scipy with HEP-specific features (where applicable)

a Compile documentation and training of best-practices for data
analysis with existing python tools for HEP

12 October 2016 19/24

The Big Picture

Your browser
° / / is the Ul
Central
JupyiSnon webservice

A3S / / \ \ Distributed

dockvzr dockczr dockw docker Computing

a Analysis in the cloud (analysis as a service)

a The notebooks can be used for outreach (e.g. tutorials in universities and
schools)

a Jupyterhub provides a jupyter notebook server with authentication, user
management, distributed computation/cluster support.

a Prototype and evaluation setup is running successfully

We are currently in discussion with data centers hosting large parts of our
user base to provide a production-grade Jupyterhub with access to storage
and batch farm.

12 October 2016 20/24

Conclusion and Outlook

m Perform Python calculations with Jupyter notebooks to have all benefits of
Python together with the interactivity.

a The lightweight software layer provided by hep_ipython_tools allows a
seamless integration of HEP frameworks (here basf2) with interactive
jupyter notebooks

Notebooks can be used for:

m Interactive development of framework module algorithms
m Working on analyses with fast feedback via inlined plots
m Self-describing Notebooks for tutorials and outreach

m Using jupyter(hub) with basf2 is a full environment for physics analysis!

m In the future: possibilities for interactive Belle 2 physics analysis via the web
browser, centrally hosted at data centers

12 October 2016 21/24

Backup Slides

12 October 2016 22/24

Full Analysis Example

(€)@ localnostsas,

ecure2p packag & [@ searen

ZJupyter sapsikshort ceasony

B+

BRI I

m (30

™ (5]

View st Cel Kemoi Hep

= carmoaar

Create path

Create BASF2 path and fill it with BASF2 nodules
ath = create pat]
inputhgst (filenane, path=path)
x(path=path)

Load final state particles
TparticleListU e, muid > 0.5', patpath)
fillParticleList('pi+', 'piid > 0.5', path=path)

onstruct our decay using some Soft cuts on the invariant mass

B

pat!
etnenth)

5o, con level-o.o, " path=path]
ig', conf. o pathapatn)

variablesToNTuple(nus+*, [*issignal’, ‘nuid’, harge'], filen
variablesToNTuple(‘pi+', ['isSignal’, 'piid’, charge'], filenam pat!
varisblesToTple(: /i, [1issional, ', distonce!. ‘chiPro{, tilenase='psis.root, pathepath

P w, " distance’, *chiProb], filenan ts. ath=path)
i el eaE . dlStamcer s chuPran DoLtAT. . WETsghFlavor:], lenamea'Bés. root, pathepath)

variablesToNTuple('B0:sig", ['issignal’, 'M',

Process path

Run BASF2 path in the background on the data using ipython handler
calculation = ipython_tools. handler. process (path)

calculation. start(

calculation wait_for_end(False)

12 October 2016

23/24

Full Analysis Example

Read input files

In [6]: Jpsis = root_pandas.read_root(‘Jpsis.root")
Kshorts = root_pandas.read root('Kshorts.root")
BOs = root_pandas.read root(‘80s.root’)
Bos.describe()

out[6]: isSignal M Mbe deltaE distance | chiPrab DeltaT MCTagBFlavor
count| 37777.000000|37777.000000 | 37777.000000 | 37777.000000 | 37777000000 | 37777.000000 | 37777.000000 |37777.000000
mean |0117020 |4.831285 |5.028480 [0.251113 [1.672794 |0.189709 [6.236745 -4.287980
std 0321459 |18471546 |0582552 (36040882 |8.319334 |0.302396 |752426514 |510.447388
min [0000000 [1.213630 |0.000000 |-3.947679 [0.000476 |0.000000 |-31209.353516 |-511.000000
26% 0000000 [4.193513 [s008841 |-0796031 [0.026089 [0.000000 |-5.144518 |-511.000000
50% 0000000 |4.499523 [5.441731 |-0.536930 |0.088720 [0.000221 |-0.027870 |-511.000000
75% 0000000 |5.07%088 [s241263 |-0.082886 |0.5%0760 |0.3058%2 [3.952079 511.000000
max |1000000 |3556.052079 |5.286911 |5543.626953 |270.880585 |1.000000 |31147.080078 |511.000000
Do some plots

In [7]: p = b2plot.Distribution(figure=plt. figure())
p.set_plot_options({’linestyle’ “color: ‘red'})
p.add (Jpsis[(Jpsis.M > 2) & (Jpsis < 4) & (Ipsis. 1551gna'l =1)], M)
p.set_plot_options({'linestyle’s ', 'color': 'bluc
p.add{Jpsis[(Jpsis.M > 2) & (Jpsis.M < 4) & (Jpsis.isSignal == 0)], 'M'})
p.finish()
p = b2plot.Distribution(figure=plt. figure())
p.set_plot_options({'linestyle’: '-', 'color': 'red'})
P

.add (Kshorts[(Kshorts.M > (ﬂ 1) & (Ksh tS M < 1) & (Kshorts issignal == 1)], 'M")

12 October 2016

23/24

Full Analysis Example

IPYTer B2psikshort e

The shown notebook was already suc-
cessfully tested with students in a tutorial
for Belle Il.

12 October 2016 23/24

References |

[4 “HEP IPython Tools.”
https://github.com/hep-ipython-tools/hep-ipython-tools
(28.9.2016).

@ N. Braun, A. Glazov, F. Metzer, and E. Paoloni, “Study of the collision point
properties.,” May 2018.

Internal note describing selection is BELLE2-NOTE-PH-2018-006.

12 October 2016 24/24

https://github.com/hep-ipython-tools/hep-ipython-tools

	Summary

