Semileptonic B decays at Belle II

Jo-Frederik Krohn Yamagata "Heavy Quarks and Leptons" May 2018 On behalf of the Belle II Collaboration

Status Belle II

Yamagata 2018, Belle II

- First collision on 26th of April
- Accelerator is running in collision mode
- > 60 pb⁻¹ of data collected (as of 28th of May 2018)
- First D* meson candidates found !

Semileptonic decays

Will talk about V_{cb} , V_{ub} (from $I = e, \mu$) $\lim_{k \to 0} F_{cb}(e^{*}) \mid v \text{ and } B \to \pi \mid v, I = e, \mu$ $\lim_{k \to 0} F_{cb}(e^{*}) = D(*) \tau v (F_{cb})^{*-} J_{*-}^{*-} J_{*-}^{*-} V_{*-}^{*-} V_{*-}^{*-$

BGL

universal and phase space factors

Phys.Rev.Lett 74, 4603

CLN arXiv: 1010.5620

arXiv: 1703.06124

hadronic effects

 $\frac{\ln tBe}{B} = \frac{1}{2} + \frac{1}{2} +$

Approaches to Measuring $B \rightarrow X Iv$

Hadronic tag channels

B^{+} modes	B^{0} modes	$D^+, D^{*+}, D_s^+ \text{ modes}$	D^0, D^{*0} modes
$B^+ \to \overline{D}{}^0 \pi^+$	$B^0 \rightarrow D^- \pi^+$	$D^+ \to K^- \pi^+ \pi^+$	$D^0 \to K^- \pi^+$
$B^+ \to \overline{D}{}^0 \pi^+ \pi^0$	$B^0 \to D^- \pi^+ \pi^0$	$D^+ \to K^- \pi^+ \pi^+ \pi^0$	$D^0 \to K^- \pi^+ \pi^0$
$B^+ \to \overline{D}{}^0 \pi^+ \pi^0 \pi^0$	$B^0 \to D^- \pi^+ \pi^+ \pi^-$	$D^+ \rightarrow K^- K^+ \pi^+$	$D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$
$B^+ \to \overline{D}{}^0 \pi^+ \pi^+ \pi^-$	$B^0 \rightarrow D_s^+ D^-$	$D^+ \rightarrow K^- K^+ \pi^+ \pi^0$	$D^0 \rightarrow \pi^- \pi^+$
$B^+ \to D_s^+ \overline{D}{}^0$	$B^0 \rightarrow D^{*-} \pi^+$	$D^+ \rightarrow K^0 \pi^+$	$D^0 \rightarrow \pi^- \pi^+ \pi^0$
$B^+ \to \overline{D}^{*0} \pi^+$	$B^0 \to D^{*-} \pi^+ \pi^0$	$D^+ \rightarrow K_S \pi$	$D \rightarrow \pi \pi \pi$
$B^+ \to \overline{D}^{*0} \pi^+ \pi^0$	$B^0 \rightarrow D^{*-} \pi^+ \pi^+ \pi^-$	$D^+ \to K_s^* \pi^+ \pi^*$	$D^{\circ} \rightarrow K_{s}^{\circ} \pi^{\circ}$ $D^{0} = K^{0} + -$
$B^+ \to \overline{D}^{*0} \pi^+ \pi^+ \pi^-$	$B^0 \to D^{*-} \pi^+ \pi^+ \pi^- \pi^0$	$D^+ \to K^0_s \pi^+ \pi^+ \pi^-$	$D^0 \to K^0_s \pi^+ \pi^-$
$B^+ \to \overline{D}^{*0} \pi^+ \pi^+ \pi^- \pi^0$	$B^0 \rightarrow D_s^{*+} D^-$	$D^{*+} \rightarrow D^0 \pi^+$	$D^0 \to K^0_s \pi^+ \pi^- \pi^0$
$B^+ \to D_s^{*+} \overline{D}{}^0$	$B^0 \rightarrow D_s^+ D^{*-}$	$D^{*+} \to D^+ \pi^0$	$D^0 \to K^- K^+$
$B^+ \to D_s^+ \overline{D}^{*0}$	$B^0 \to D_s^{*+} D^{*-}$	$D_s^+ \to K^+ K_s^0$	$D^0 \rightarrow K^- K^+ K_s^0$
$B^+ \to \overline{D}{}^0 K^+$	$B^0 \to J/\psi K^0_{\scriptscriptstyle S}$	$D^+_s \to K^+ \pi^+ \pi^-$	$D^{*0} \rightarrow D^0 \pi^0$
$B^+ \rightarrow D^- \pi^+ \pi^+$	$B^0 \rightarrow J/\psi K^+ \pi^+$	$D^+ \rightarrow K^+ K^- \pi^+$	$D^{*0} \rightarrow D^0 \gamma$
$B^+ \to J/\psi K^+$	$B^0 \to J/\psi K^0_{\scriptscriptstyle S} \pi^+ \pi^-$	$D^+ \rightarrow K^+ K^- \pi^+ \pi^0$	2 , 2 ,
$B^+ \to J/\psi K^+ \pi^+ \pi^-$		D_s / M M / h	
$B^+ \to J/\psi K^+ \pi^0$		$D_s^+ \to K^+ K_s^- \pi^+ \pi^-$	
$B^+ \to J/\psi K^0_{\scriptscriptstyle S} \pi^+$		$D_s^+ \to K^- K_s^0 \pi^+ \pi^+$	
$B^+ \to D^- \pi^+ \pi^+ \pi^0$	$B^0 \to D^- \pi^+ \pi^0 \pi^0$	$D_s^+ \to K^+ K^- \pi^+ \pi^+ \pi^-$	
$B^+ \to \overline{D}{}^0\pi^+\pi^+\pi^-\pi^0$	$B^0 \rightarrow D^-\pi^+\pi^+\pi^-\pi^0$	$D_s^+ \to \pi^+ \pi^+ \pi^-$	
$B^+ \to \overline{D}{}^0 D^+$	$B^0 \to \overline{D}{}^0 \pi^+ \pi^-$	$D_s^{*+} \to D_s^+ \pi^0$	
$B^+ \to \overline{D}{}^0 D^+ K^0_s$	$B^0 \rightarrow D^- D^0 K^+$	$D^+ \to \pi^+ \pi^0$	$D^0 \to K^- \pi^+ \pi^0 \pi^0$
$B^+ \to \overline{D}^{*0} D^+ K^0_s$	$B^0 \to D^- D^{*0} K^+$	$D^+ \rightarrow \pi^+ \pi^+ \pi^-$	$D^0 \to K^- \pi^+ \pi^+ \pi^- \pi^0$
$B^+ \to \overline{D}{}^0 D^{*+} K^0_{\scriptscriptstyle S}$	$B^0 \to D^{*-} D^0 K^+$	$D^+ \rightarrow \pi^+ \pi^+ \pi^- \pi^0$	$D^0 \rightarrow \pi^- \pi^+ \pi^+ \pi^-$
$B^+ \to \overline{D}^{*0} D^{*+} K^0_{\scriptscriptstyle S}$	$B^0 \rightarrow D^{*-} D^{*0} K^+$	$D^+ \rightarrow K^+ K^0 K^0$	$D^0 \rightarrow \pi^- \pi^+ \pi^0 \pi^0$
$B^+ \to \overline{D}{}^0 D^0 K^+$	$B^0 \rightarrow D^- D^+ K_s^0$	$D^{*+} D^{+}$	$D^0 \downarrow V - V + -0$
$B^+ \to \overline{D}^{*0} D^0 K^+$	$B^0 \to D^{*-} D^+ K^0_{\rm s}$	$ \begin{array}{c} D & \to D & \gamma \\ D^+ & V^0 & \pm \end{array} $	$D^* \rightarrow \Lambda^- \Lambda^+ \pi^*$
$B^+ \to \overline{D}{}^0 D^{*0} K^+$	$B^0 \to D^- D^{*+} K^0_{\scriptscriptstyle S}$	$D_s^+ \to K_s^0 \pi^+$	
$B^+ \to \overline{D}^{*0} D^{*0} K^+$	$B^0 \rightarrow D^{*-} D^{*+} K^0_{\scriptscriptstyle S}$	$D_s^+ \to K_s^0 \pi^+ \pi^0$	
$B^+ \to \overline{D}^{*0} \pi^+ \pi^0 \pi^0$	$B^0 \rightarrow D^{*-} \pi^+ \pi^0 \pi^0$	$D_s^{*+} \to D_s^+ \pi^0$	

Tag algorithm	MVA	Efficiency	Purity
Belle v1 (2004)	Cut-based	-	-
Belle v3 (2007)	Cut-based	0.1%	0.25%
Belle NB	Neurobayes	0.2%	0.25%
Belle II FEI (2017)	BDT	0.5%	0.25%

- New, more efficient tag algorithm
 - Includes more channels
 - ~5000 channels !
- Semileptonic tag Fast BDT tag, based on B → D(*) I v and B → D(*)π I v...
 - > 200 channels

New channels

Improving hadronic tag

- Instead of fitting cascades of fits (Belle)
 - D→Kmn⁰, D*→Dπ, B→D*π in three fits
- Fit the decay tree in one global fit
 [D*[→D[→Kmn⁰]π]
- New technique
 - Aimed at channels with neutrals D*→Dπ⁰, D*→Dγ,
 D→Km⁰, ...
 - Allows to reject background
 - Better tag purity

(Paper in review)

Jo-Frederik Krohn

π⁰ reconstruction

- Important for tagging and τ reconstruction
- π⁰ invariant mass in early Belle II data
- Expected resolution on photon energy of ~3-5%

Yamagata 2018, Belle II

Muon identification and Electron identification

Jo-Frederik Krohn

- Electrons are light: Final state radiation
 - **Bremsstrahlung recovery** partially fixes this
- Belle II:

→ MVA for low momentum in progress.

 Material budget in tracking value allows good electron identification

Yamagata 2018, Belle II

THE UNIVERSITY O

MELBOURNE

$B \rightarrow D(*) | v$

=

=

 $|V_{cb}| = (42.11 \pm 0.74) \times 10^{-3}$

Exclusive

 $|V_{cb}|_{D^*\ell\nu}$

 $|V_{cb}|_{D\ell\nu}$

Inclusive

arXiv:1611.07387 arXiv:1801.01112 B2TIP

Belle arXiv:1702.01521

THE UNIVERSITY OF MELBOURNE

9

Jo-Frederik Krohn

🄏 Yamagata 2018, Belle II

CLN parametrised!

 $(39.05 \pm 0.47_{\rm exp} \pm 0.58_{\rm th}) \times 10^{-3}$,

 $(39.18 \pm 0.94_{\rm exp} \pm 0.36_{\rm th}) \times 10^{-3}$.

(~2.5 σ)

Belle II projections for $B \rightarrow D(*) \mid v$

- Most errors cancel in LFUV measurement, except for eID, µID [data driven errors]
- $B \rightarrow D^* | v$,
 - $|V_{cb}|$ Experiment Error : 3% \rightarrow 1%
 - $R_{e/\mu}$: 5% approx. $\rightarrow \sim 1\%$
 - lepton ID, slow π
- $B \rightarrow D | v$,
 - $|V_{cb}|$ Experiment Error 3% $\rightarrow 1\%$ $\frac{1}{2}$ 1.00
 - R_{e/µ}: (6% approx.) → ~1%
 - hadronic tag purity

$$\mathcal{R}_{e/u} = rac{\mathcal{B}(B^0 \rightarrow D^{*+}e^-\nu_e)}{\mathcal{B}(B^0 \rightarrow D^{*+}\mu^-\nu_\mu)}$$

Jo-Frederik Krohn

$B \rightarrow D(*) \tau v signal$

Yamagata 2018, Belle II

- Identification / reconstruction of τ leptons is very challenging
 - Short lifetime of 10⁻¹² s
 - Hadronic decay with π's and 1 v
 - Leptonic decay with e/µ and 2 v
 - Lack of full reconstruction implies
 background mimics the the signal
 where some daughters are lost
 e.g. K_L, π⁰. Often difficult to
 constrain with "sideband" data.
 - New MVA based K_L identification

	R_D	R_{D^*}
BaBar (Had, ℓ^-)	$0.440 \pm 0.058 \pm 0.042$	$0.332 \pm 0.024 \pm 0.018$
Belle (Had, ℓ^-)	$0.375 \pm 0.064 \pm 0.026$	$0.293 \pm 0.038 \pm 0.015$
Belle (SL, ℓ^-)	NA	$0.302 \pm 0.030 \pm 0.011$
LHCb	NA	$0.336 \pm 0.027 \pm 0.030$
Belle (Had, h^-)	NA	$0.270 \pm 0.035^{+0.028}_{-0.025}$
Average	$0.397 \pm 0.040 \pm 0.028$	$0.310 \pm 0.015 \pm 0.008$

$$\mathcal{R}(D^*) = \frac{\mathcal{B}(\bar{B} \to D^* \tau^- \bar{\nu}_{\tau}^-)}{\mathcal{B}(\bar{B} \to D^* l^- \bar{\nu}_{l}^-)}$$

Phvs.Rev.Lett. 109.1018	02
Phvs.Rev.D 88. 072012	2
Phvs.Rev.D 92. 072014	
Phvs.Rev. D94.072007	
	VERSITY C

Events / (0.0666667)

10³

10²

10

-1.0

-0.5

Signal

Normalization

0.5

1.0

1.2

 $B \rightarrow D^{**} Iv$

Others

0.0

Fake $D^{(*)}$

Semileptonic tag

 $B \rightarrow D(*) \tau \vee (R(*)_{\tau})$

- Discriminate $B \rightarrow D(*) \tau v$ and $B \rightarrow D(*) I v$ using MVA, based on M^{2}_{miss} cos θ_{B} , E_{Btag} + E_{Bsig}
- Yield extracted using a 2d fit of the classifier output and EECL

$$\mathcal{R}(D^*) = \frac{\mathcal{B}(\bar{B} \to D^* \tau^- \bar{\nu}_{\tau}^-)}{\mathcal{B}(\bar{B} \to D^* l^- \bar{\nu}_{l}^-)}$$

Belle II projections $B \rightarrow D(*) \tau v$

LHCb arXiv:1711.02505

LHCb arXiv:1711.05623 Belle PRD 94, 072007 (2016)

 q^2 spectrum in $B \rightarrow D^* \tau v$

Yamagata 2018, Belle II

- Full sim sensitivity studies in progress.
- Projections based on Belle + assumed R(D)_{SL} precision
- Background modelling (D**) will dominate error @ 50 ab⁻¹.
- Precise analysis of kinematics

$B \rightarrow \pi \tau v \text{ and } B \rightarrow \pi I v$

Belle Phys.Rev. D88, 032005 Belle Phys. Rev. D 93, 032007

B2Tip

- $B \rightarrow \pi \tau v$ at Belle (no R_{π} @Belle)
- $\tau \rightarrow | v v, \tau \rightarrow \pi v, \tau \rightarrow \pi v$
- Measured using M²_{miss} and signal BDT (reject $B \rightarrow \pi I v$)
- Yield extracted in E_{ECL} (\rightarrow upper limit)

Belle II:

- IV_{ub}I should be measured to ~1-2% accuracy with $B \rightarrow \pi I v$ (based on Belle II full sim.)
- Can do LFUV tests, $e/\mu/\tau$

L [ab ⁻¹]	πlv	σ V _{ub} [%]
1	tagged	6.2
	untagged	3.6
5	tagged	3.2
	untagged	2.1
	leptonic	5
50	tagged	1.7
	untagged	1.3
	leptonic	1.5 - 2

Belle II
projection
$$R_{\pi}^{5 \text{ ab}^{-1}} = 0.64 \pm 0.23$$
,
 $R_{\pi}^{50 \text{ ab}^{-1}} = 0.64 \pm 0.09$.

 $\mathcal{B}\left(B^0 \to \pi^- \tau^+ \nu_\tau\right) < 2.5 \times 10^{-4}$

Projections for CKM

V_{ub} from $B \rightarrow \pi I v$

THE UNIVERSITY OF MELBOURNE

15

🍊 Yamagata 2018, Belle II

ı۲

Summary

- Belle II will collect 5(50) ab⁻¹data by 2020(2025)
- With about 5 ab^{-1} (mid 2020) we will be able to confirm new physics in $B \rightarrow D(*) \tau v$ and other characteristics (τ -polarisation)
- Precise, model independent measurements of CKM matrix elements V_{cb} and V_{ub} in 4d bins
 - Probe LFUV 70 60 Goal of Belle II/SuperKEKB Integrated luminosity (ab⁻¹) 50 40 Confirm B→D*τ v New physics 30 20 9 months/year 10 20 days/month x10³⁵ Peak luminosity (cm⁻²s⁻¹) 2017 2018 2019 2021 2022 2024 2020 2023 2025 **Calendar Year** Yamagata 2018, Belle II Jo-Frederik Krohn 16

Thank you

Yamagata 2018, Belle II Jo

Projections for CKM

Overview Belle

- B → D(*) I v
 - IV_{cb}I
 - R(*)_{e/µ}

Not precisely studied at Belle

- B →D(*) τ v
 - $R(*)_{\tau/I}$, anomaly $\Delta \sim 30\% (\sim 4\sigma)$
 - q², kinematics
- $B \rightarrow X_c | v$
 - V_{cb} anomaly, inclusive vs exclusive $\Delta \sim$ 5-6% (~2.5 σ)
- $B \rightarrow \pi | v$

Belle II General Status and Timeline

 Phase 2 (w/final focusing Q, w/Belle II, w/ partial Si configuration & background monitors)

MELBOURNE

- Verification of nano-beam scheme
 - Target L > 10³⁴ cm-2s-1

 \mathcal{B}

 Understand beam background and its luminosity scaling particularly in VXD volume.
 Yamagata 2018, Belle II
 Jo-Frederik Krohn

Beam background (MC

Increases occupancy in inner Si layers - can degrade tracking.

2000

THE UNIVERSITY OF

• 2017, Hadron tag, $\tau \rightarrow h v$

	Combined		Ţ		
Source	$R(D^*)$	P_{τ}			
$D^{**}l^-\bar{\nu}_l$ + had. B composition	5.2%	0.17			
MC stat. for PDF construction	3.5%	0.16			
Fake D^* yield	2.0%	0.048			
Semileptonic decay model	1.9%	0.015			• 1
Efficiency corr. for $l^-/\pi^-/\rho^-$	1.8%	0.013		$R(D^*)$	oned P
P_{τ} correction function	0.33%	0.012	$\bar{B} \rightarrow D^{**} l^- \bar{\nu}_l$	0.17%	0.011
Efficiency uncertainty (MC stat.)	0.78%	0.008	$\bar{B} \to D^{**} l^- \bar{\nu}_l \ (100\% \ \mathrm{error})$	0.84%	0.054
$\bar{B} \to D^* l^- \bar{\nu}_l$ yield	0.65%	0.027	$B \to D^{**} \tau^- \bar{\nu}_l \ (100\% \ \text{error})$	2.7%	0.016
$M_{\rm miss}^2$ shape for $\bar{B} \to D^* l^- \bar{\nu}_l$	0.41%	0.001	$\bar{B} \rightarrow D^* K^- / \pi^- K_L^0$	0.77% 0.25%	0.020
Fake D^* PDF shape	0.22%	0.001	Other K_L^0 mode (100% error)	0.28%	0.021
Total	7.1%	0.24	+ Other <i>B</i> decays Other <i>P</i> decays $(100\% \text{ cmm})$	1.4%	0.058
Expected stat. error	$\sim 14\%$	~ 0.56	Total	4.1% 5.2%	0.14

$B \rightarrow D^{**} | v$

- 3 problems to cover in Belle II
 - Modelling of $B \rightarrow D^{**} I v$ kinematics
 - Normalisation
 - Unmeasured $D^{**} \rightarrow$ modes, for saturation of $B \rightarrow X I v$

3000

2000

1000

3000

2000 1000

0.5

0

0.5

GeV)

0.045

vents /

Babar PRL

🔶 Data

<mark>Ծ D(*)</mark>πh

W Other BB

____ e⁺e⁻ → qq

Dh

D*h

1

1.5 U (GeV)

LFUV in e/μ , and Model Independent SL Form

$$\frac{d\Gamma}{dw}(B \to D\ell\nu) \sim (\text{Phase Space})|V_{cb}|^2 G(w)^2$$

$$\frac{d\Gamma}{dw}(B \to D^*\ell\nu) \sim (\text{Phase Space})|V_{cb}|^2 F(w)^2 \sum_{i=+,0,-} |H_i(w)|^2$$
BGL, Boyd, Grinstein, Lebed Phys.Rev.Lett 74, 4603
$$F_i(w) = \frac{p_i(w)}{B_i(z)\phi_i(z)} \sum_{n=0}^N a_n^{(i)} z^n \qquad (1995)$$

$$z = (\sqrt{w+1} - \sqrt{2})/(\sqrt{w+1} + \sqrt{2})$$
CLN, Caprini, Lellouch, Neubert Nucl.Phys.B530, 153

$$(1998)$$

$$G(w) = G(1)[1 - 8\rho^2 z + (51\rho^2 - 10)z^2 - (252\rho^2 - 84)z^3]$$

$$w = \frac{m_B^2 + m_D^2 - q^2}{2m_B m_d}$$

	$ V_{cb} = (42.19 \pm 0.78) \cdot 10^{-3}$	from	$B \to \frac{X_c}{l} \nu$	
HFLAV (CLN)	$ V_{cb} = (39.05 \pm 0.47_{exp} \pm 0.58_{th}) \cdot 10^{-3}$	from	$B \rightarrow D^* l \nu$	
	$ V_{cb} = (39.18 \pm 0.94_{exp} \pm 0.36_{th}) \cdot 10^{-3}$	from	$B \rightarrow D l v$	
Yamagata 2018, Belle	e II Jo-Frederik Krohn	26		

Electron identification

- Electrons are light: Final state radiation
 - Bremsstrahlung recovery partial fixes this

Yamagata 2018, Belle II

Jo-Frederik Krohn

27

THE UNIVERSITY OF MELBOURNE

Muon identification

- Muons are the easiest to identify
 - Little to **no radiation** (heavy)
 - Stable within particle detectors
 - No strong interactions in absorber material

Yamagata 2018, Belle I

0.4

0.2

0

