

Missing Energy B Decays at the Belle II Experiment

Mario Merola (Università di Napoli Federico II and INFN) On behalf of the Belle II Collaboration Beauty 2018, 10 May, Isola d'Elba

SuperKEKB

- Electron-positron collider situated at KEK (Tsukuba, Japan), upgrade of KEKB
- e^+e^- (4 GeV + 7 GeV) $\rightarrow \mathbf{B}\overline{\mathbf{B}}$ mainly at $\sqrt{s^{cm}}=10.58$ GeV (peak of $\Upsilon(4S)$ resonance)
- First collisions recorded on 26 April (see more in the talk tomorrow "Phase II running of SuperKEKB and Belle II" Carlos Marinas)

From KEKB to SuperKEKB

From Belle to Belle II

- better K/ π separation and flavor tagging
- robust against machine background
- \bullet higher K_{S}, π^0 and slow pions reconstruction efficiency

- Clean experimental environment: high B, D, K,
 τ lepton reconstruction efficiency
- **Excellent EM calorimetry performance:** high reconstruction efficiency of neutral final states too

The full reconstruction of one B (B_{tag}) constraints the 4-momentum of the other (B_{sig})

Reconstruction of channels with missing energy

$$p_{\nu} = p_{e^+e^-} - p_{B_{tag}} - p_{B_{sig}}$$

1.00 Eler 0.00 Mon Feb 9 17z55z46 2004

BELLE

- Low efficiency
- B tag completely reconstructed +
- Semileptonic tagging
 - More backgrounds, B momentum unmeasured
 - Higher efficiency
- Inclusive tagging (no tagging)
 - B-tag not explicitly reconstructed
 - Reconstruct the signal and then use the Rest of Event (ROE) to constrain the neutrino momentum

$$\epsilon = \mathcal{O}(0.5\%)$$

$$\epsilon = \mathcal{O}(1\%)$$

$$\epsilon = \mathcal{O}(100\%)$$

Purity

Tag side reconstruction: Full Event Interpretation (FEI)

- Hierarchical approach: train multivariate classifiers (MVC) on FSP, then reconstruct intermediate particles and build new dedicated MVC. For each candidate a signal probability is defined, which represents the "goodness" of its reconstruction. It uses:
- PID, tracks momenta, impact parameters;
- Cluster info, energy and direction;
- Invariant masses, daughter momenta, vertex quality;
- Classifier output of the daughters

Belle FR: NIM A 654, 432-440 (2011)

Belle II FEI: https://ekp-invenio.physik.uni-karlsruhe.de/record/48602/files/EKP-2015-00001.pdf

Improvement in Belle II algorithms: background rejection

FEI performance with hadronic B-tag reconstruction

Tag algorithm date	MVA	Efficiency	Purity
Belle (2007)	Cut-based	0.1	0.25
Belle FR (2011)	Neurobayes	0.2	0.25
Belle II FEI (2017)	Boosted Decision Trees	0.5	0.25

- Penguin electroweak decays ($B \rightarrow K^{(*)}vv$)
- Leptonic decays to muon, electron, neutrinos and radiative (B $\rightarrow \mu\nu$, ev, $\nu\nu$, $l\nu\gamma$)

Belle II Physics Book to be published in 2018

- Inclusive semileptonic decays $(B \rightarrow X l v)$
- Semileptonic decays with tau $(B \rightarrow D^{(*)}\tau\nu)$
- Leptonic decay to tau leptons $(B \rightarrow \tau \nu)$
- Penguin electroweak decays $(B \rightarrow K^{(*)}vv)$
- Leptonic decays to muon, electron, neutrinos and radiative (B $\rightarrow \mu \nu$, ev, $\nu \nu$, $l\nu\gamma$)

Updates expected by the next Beauty Conference !

BR $\sim 22\%$

Semileptonic decays: $B \rightarrow X_{u} l v$

Measurement of $|V_{ub}|$ from inclusive and exclusive B decays

- Inclusive decays measurement
 - Hadronic tag
 - Exploit kinematic endpoints to

reduce
$$B \rightarrow X_c l v$$
 bkg

 $|V_{ub}|^2 = \Delta \mathcal{B}_{u\ell\nu} / (\tau_B \Delta \mathcal{R})$

Measured BR in fiducial phase space region

B meson lifetime Predicted partial decay rate

Semileptonic decays: $B \rightarrow X_{u} l v$

Belle II Full Simulation study

- $B^0 \rightarrow \pi \, l \, \nu$ decay
 - Untagged or tagged (with FEI)
 - Exploit missing mass and extra energy in the calorimeter
 - $\mathcal{B} \sim f_i |V_{ub}|^2$; form factors f_i computed with LQCD (PRD 91, 074510 (2015))

Belle II @ 50 ab⁻¹: ~3% (inclusive) / ~2% (exclusive $\pi l \nu$) uncertainty

Semileptonic decays: $B \rightarrow D^{(*)}\tau v$

Clear test of the SM LFU: **NP** (as charged Higgs in 2HDM models or Leptoquarks) can affect the **BR** and the tau polarization P_{τ}

$$\mathcal{R}(D^{(*)}) = \frac{\mathcal{B}(\bar{B} \to D^{(*)}\tau^-\bar{\nu}_\tau)}{\mathcal{B}(\bar{B} \to D^{(*)}\ell^-\bar{\nu}_\ell)} \quad (\ell = e, \mu)$$

Important background due to D^{**} ; not well known, poor modeling -> big uncertainty (1.4% over a total systematic uncertainty of 3.4%)

Extract the fractions with positive and negative tau helicity

Semileptonic decays: $B \rightarrow D^{(*)}\tau v$ **Belle II projections**

Combination

4.1 σ from the SM

	ΔR(D) [%]			ΔR(D*) [%]			
	Stat	Sys	Total	Stat	Sys	Total	
Belle 0.7 ab ⁻¹	14	6	16	6	3	7	
Belle II 5 ab-1	5	3	6	2	2	(3)	
Belle II 50 ab-1	2	3	3	1	2	2	

Projections based on Belle SL measurement

Belle II full simulation studies in progress

 $P_{\tau}(D^*)$ vs $R(D^*)$

Leptonic B decays

• Clean theoretically, hard experimentally: only $B \rightarrow \tau v$ has been measured

Belle combination

$$\begin{aligned} \mathcal{B} &= [0.91 \pm 0.19 (\mathrm{stat.}) \pm 0.11 (\mathrm{syst.})] \times 10^{-4} \\ & \text{(evidence at \sim4.6 σ level)} \end{aligned}$$

Belle T

Belle II full simulation study

- Hadronic tag with FEI
- 1-prong τ decays ($\mu\nu\nu$, $e\nu\nu$, $\pi\nu$, $\rho\nu$)
- Dedicated study on machine background impact
- ML fit to extra energy E_{ECL}

Extra energy in the calorimeter

Main systematic uncertainties:

background E_{Extra} PDF, branching fractions of the peaking backgrounds, tagging efficiency, and K^0_L veto efficiency

	Integrated Luminosity (ab^{-1})	1	5	50
hadronic tag	statistical uncertainty (%)	29.2	13.0	4.1
	systematic uncertainty $(\%)$	12.6	6.8	4.6
	total uncertainty $(\%)$	31.6	(14.7)	6.2
semileptonic tag	statistical uncertainty (%)	19.0	8.5	2.7
	systematic uncertainty $(\%)$	17.9	8.7	4.5
	total uncertainty (%)	26.1	12.2) 5.3

Observation at $\sim 3 \text{ ab}^{-1}$

Leptonic B decays: $B \rightarrow \mu \nu$ and radiative $B \rightarrow l \nu \gamma$

$B \rightarrow \mu \nu$

- Two body decay: $p_{\mu}^* = m_B/2$ in B rest frame
- Tagging \rightarrow better p_{μ}^{*} resolution but small statistics
- $\sim 2.4\sigma$ measurement

$B \to l \nu \gamma$

- Radiative decay lifts the helicity suppression
- Allows a measurement of $\lambda_B \rightarrow$ crucial input to QCD factorization predictions of charmless hadronic B decays

Flavour changing neutral current $B \rightarrow K^{(*)} \nu \overline{\nu}$

- Prohibited in the SM at tree level: penguin + box diagrams
- BR ~ $10^{-5} \div 10^{-6}$; NP contribution can increase the BR by factor 50
 - non standard Z-couplings (SUSY)
 - New missing energy sources (DM, extra dim.)

Flavour changing neutral current $B \rightarrow K^{(*)} \nu \overline{\nu}$

Events 0009

5000

4000

3000

2000

B⁰B B⁰B cc uds

Belle II full simulation study

- Hadronic tag with FEI
- $K^* \rightarrow K\pi^0$
- Cut and count in extra energy signal window

- Unique capabilities of Belle II to study **B decays with** missing energy in the final state
- Within the first two years of data taking Belle II will collect
 5 to 10 ab⁻¹ and will be able to
 - address the Lepton Flavour Universality Violation by precisely measuring R(D) / R(D*)
 - address the |V_{ub}| puzzle from inclusive and exclusive semileptonic decays
- Discovery potential also in rare processes suppressed in the SM $(B \rightarrow \tau \nu, B \rightarrow l \nu \gamma, B \rightarrow K^{(*)} \nu \nu, B \rightarrow \mu \nu, B \rightarrow \nu \nu)$

Thanks !

Belle II Detector	Belle	Π	D	ete	ect	or
-------------------	-------	---	---	-----	-----	----

Component	Туре	Configuration	Readout	Performance
Beam pipe	Beryllium	Cylindrical, inner radius 10 mm,		
	double-wall	$10 \ \mu m$ Au, 0.6 mm Be,		
		1 mm coolant (paraffin), 0.4 mm Be		
PXD	Silicon pixel	Sensor size: 15×100 (120) mm ²	10 M	impact parameter resolution
	(DEPFET)	pixel size: 50×50 (75) μm^2		$\sigma_{z_0}\sim 20~\mu{ m m}$
		2 layers: 8 (12) sensors		(PXD and SVD)
SVD	Double sided	Sensors: rectangular and trapezoidal	245 k	
	Silicon strip	Strip pitch: $50(p)/160(n) - 75(p)/240(n) \ \mu m$		
		4 layers: 16/30/56/85 sensors		
CDC	Small cell	56 layers, 32 axial, 24 stereo	14 k	$\sigma_{r\phi}=100~\mu{ m m},\sigma_z=2~{ m mm}$
	drift chamber	r = 16 - 112 cm		$\sigma_{p_t}/p_t = \sqrt{(0.2\% p_t)^2 + (0.3\%/\beta)^2}$
		- 83 $\leq z \leq$ 159 cm		$\sigma_{p_t}/p_t = \sqrt{(0.1\% p_t)^2 + (0.3\%/\beta)^2}$ (with SVD)

component	background	generic $B\overline{B}$
PXD	10000 (580)*	23
\mathbf{SVD}	284(134)	108
CDC	654	810
TOP	150	205
ARICH	191	188
ECL	3470	510
BKLM	484	33
EKLM	142	34

Total number of hits per event in each subdetector

10/05/18

* in parentheses numbers without 2-γ QED

 \sim

Tracking without VXD

What can we do with phase II data ?

- Background studies
- Detector and trigger performance studies
- Simulation validation
- Exercising of calibration and alignment procedures
- Reconstruction algorithm tuning
- Physics measurements

Belle II Physics Book

- B2TiP Report (600p)
 - <u>https://confluence.desy.de/</u> <u>display/BI/B2TiP+ReportStatus</u>
- To be published in PTEP / Oxford University Press & printed.
 - Belle II Detector, Simulation, Reconstruction, Analysis tools
 - Physics working groups
 - New physics prospects and global fit code

Prog. Theor. Exp. Phys. 2015, 00000 (319 pages) DOI: 10.1093/ptep/0000000000 **The Belle II Physics Book** Emi Kou¹, Phillip Urquijo², The Belle II collaboration³, and The B2TiP theory community⁴ ¹LAL *E-mail: kou@lal.in2p3.fr ²Melbourne *E-mail: purquijo@unimelb.edu.au ³Addresses of authors

The report of the Belle II Theory Interface Platform is presented in this document.

		Contents	PAGE
1	Intro	duction	6
	1.1	Goals	6
	1.2	Particle physics after the B-factories and LHC run I (and run II	I first
	data)		7
	1.3	Flavour physics questions to be addressed by Belle II	7
	1.4	Advantages of SuperKEKB and Belle II	8
	1.5	Overview of SuperKEKB	9
	1.6	Data taking overview	10
	1.7	The Belle II Golden channels	10
2	Belle	II Simulation	11
	2.1	Introduction	11
	2.2	Cross Sections	11
	2.3	Generators	11
	2.4	Beam-induced background	15
	2.5	Detector Simulation	17

FEI Calibration

27

FEI validated on Belle real data

Figure 4.18.: The overall efficiency correction calculated by measuring the known branching fractions of 10 control channels on converted Belle data [76].

Thomas Keck's master thesis

Physics prospects: Belle II vs LHCb

28

Observables	Expected th. accuracy	Expected exp. uncer-	Facility (2025)		Observables	Belle or LHCb [*]	Bel	le II	LHCb
		tainty				(2014)	$5 { m ~ab^{-1}}$	$50 {\rm ~ab^{-1}}$	$2018 \ 50 \ {\rm fb}^{-1}$
UT angles & sides				Charm Rare	$\mathcal{B}(D_s \to \mu\nu)$	$5.31 \cdot 10^{-3} (1 \pm 5.3\% \pm 3.8\%)$	2.9%	0.9%	
φ1 [°]	***	0.4	Belle II		$\mathcal{B}(D \to \pi u)$	$5.70 \cdot 10^{-3}(1 + 3.7\% + 5.4\%)$	2 50%	9.9%	
ϕ_2 [°]	**	1.0	Belle II		$\mathcal{D}(\mathcal{D}_s \to \mathcal{T}\mathcal{V})$	$5.10 \cdot 10$ (1 $\pm 5.170 \pm 5.470$)	3.370	2.3/0	
φ ₃ [°]	***	1.0	Belle II/LHCb		$\mathcal{B}(D^0 \to \gamma \gamma) \ [10^{-6}]$	< 1.5	30%	25%	
$ V_{cb} $ incl.	***	1%	Belle II	Charm CP	$A_{CP}(D^0 \to K^+ K^-)$ [10 ⁻⁴]	$-32 \pm 21 \pm 9$	11	6	
$ V_{cb} $ excl.	***	1.5%	Belle II		$\Lambda A_{GD}(D^0 \to K^+ K^-)$ [10 ⁻³]	3.4*			05 01
$ V_{ub} $ incl.	**	3%	Belle II		$\Delta A_{CP}(D \rightarrow K \ K \) [10]$	0.00	0.1	0.00	0.00 0.005
$ V_{ub} $ excl.	**	2%	Belle II/LHCb		$A_{\Gamma} \begin{bmatrix} 10 & 2 \end{bmatrix}$	0.22	0.1	0.03	0.02 0.005
CPV					$A_{CP}(D^0 \to \pi^0 \pi^0) \ [10^{-2}]$	$-0.03 \pm 0.64 \pm 0.10$	0.29	0.09	
$S(B \to \phi K^0)$	***	0.02	Belle II		$A_{CP}(D^0 \to K_S^0 \pi^0)$ [10 ⁻²]	$-0.21 \pm 0.16 \pm 0.09$	0.08	0.03	
$S(B \to \eta' K^0)$	***	0.01	Belle II	~	$(100 + 10) + (100)^{21}$	0.50 + 0.40 + 0.07			
$\mathcal{A}(B \to K^0 \pi^0)[10^{-2}]$	***	4	Belle II	Charm Mixing	$x(D^{0} \to K_{S}^{0}\pi^{+}\pi^{-}) [10^{-2}]$	$0.56 \pm 0.19 \pm 0.13$	0.14	0.11	
$\mathcal{A}(B \to K^+ \pi^-) \ [10^{-2}]$	***	0.20	LHCb/Belle II		$y(D^0 \to K_S^0 \pi^+ \pi^-) \ [10^{-2}]$	$0.30 \pm 0.15 \pm \frac{0.05}{0.08}$	0.08	0.05	
(Semi-)leptonic					$ q/p (D^0 \rightarrow K_S^0 \pi^+ \pi^-)$	$0.90 \pm 0.16 \pm 0.08 \\ 0.15 \pm 0.06$	0.10	0.07	
$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	**	3%	Belle II		$\phi(D^0 \to K_c^0 \pi^+ \pi^-)$ [°]	$-6 \pm 11 \pm \frac{4}{5}$	6	4	
$\mathcal{B}(B \to \mu \nu) \ [10^{-6}]$	**	7%	Belle II			5			
$R(B \to D\tau\nu)$	***	3%	Belle II	Tau	$\tau \to \mu \gamma \ [10^{-9}]$	< 45	< 14.7	< 4.7	
$R(B \to D^* \tau \nu)$	***	2%	Belle II/LHCb		$\tau \rightarrow e \gamma \ [10^{-9}]$	< 120	< 39	< 12	
Radiative & EW Penguins					$\tau \rightarrow \mu \mu \mu [10^{-9}]$	< 21.0	< 3.0	< 0.3	
$\mathcal{B}(B \to X_s \gamma)$	**	4%	Belle II				4 010	4 010	
$A_{CP}(B \to X_{s,d}\gamma) \ [10^{-2}]$	***	0.005	Belle II						
$S(B \to K_S^0 \pi^0 \gamma)$	***	0.03	Belle II						
$S(B \to \rho \gamma)$	**	0.07	Belle II						
$\mathcal{B}(B_s \to \gamma \gamma) [10^{-6}]$	**	0.3	Belle II						
$\mathcal{B}(B \to K^* \nu \overline{\nu}) \ [10^{-6}]$	***	15%	Belle II						
$\mathcal{B}(B \to K \nu \overline{\nu}) [10^{-6}]$	***	20%	Belle II						
$R(B \to K^*\ell\ell)$	**	0.03	Belle II/LHCb						
X · · · · ·			/						

Semileptonic decay: $B^0 \rightarrow \pi l \nu$

Table 54: Summary of systematic uncertainties on the branching fractions of $B^0 \to \pi^- \ell^+ \nu_\ell$ decays in hadronic tagged and untagged Belle analyses with 711 fb⁻¹ [271] and 605 fb⁻¹ [269] data samples, respectively. The estimated precision limit for some sources of systematic uncertainties is given in brackets.

Source	Error (L	imit) [%]
	Tagged $[\%]$	Untagged
Tracking efficiency	0.4	2.0
Pion identification	-	1.3
Lepton identification	1.0	2.4
Kaon veto	0.9	_
Continuum description	1.0	1.8
Tag calibration and $N_{B\overline{B}}$	4.5(2.0)	2.0(1.0)
$X_u \ell \nu$ cross-feed	0.9	0.5~(0.5)
$X_c \ell \nu$ background	_	0.2(0.2)
Form factor shapes	1.1	1.0(1.0)
Form factor background	_	0.4(0.4)
Total	5.0	4.5
(reducible, irreducible)	(4.6, 2.0)	(4.2, 1.6)

0.5

1.5

Belle II M

B⁰ → X_u I[†] B⁰ → ρ[−] I[†]

 M_{miss}^2 [GeV²/c⁴]

LQCD: current is the world avergage by FLAG group

- 5 yr w/o EM": We assume a factor of 2 reduction of the lattice QCD uncertainty in the next ve years and that the uncertainty of the EM correction is negligible (e.g. for processes insensitive to the EM correction).

- 5 yr w/ EM": The lattice QCD uncertainty is reduced by a factor of 2, but we add in quadrature 1% uncertainty from the EM correction19.

- 10 yr w/o EM": We assume a factor of 5 reduction of the lattice QCD uncertainty in the next ten years. It is also assumed that the EM correction will be under control and its uncertainty is negligible.
- 10 yr w/ EM": We assume lattice QCD uncertainties reduced by a factor of 5, but add in quadrature 1% uncertainty from the EM correction.

Arbitrary scale

0.15

0.1

0.05

Belle PRD 94, 072007(2016) SL tag

	\mathcal{R}	(D^*) [%]	
Sources	$\ell^{\rm sig} = e, \mu$	$\ell^{\rm sig} = e$	$\ell^{\rm sig} = \mu$
MC size for each PDF shape	2.2	2.5	3.9
PDF shape of the normalization in $\cos \theta_{B-D^*\ell}$	$^{+1.1}_{-0.0}$	$^{+2.1}_{-0.0}$	$^{+2.8}_{-0.0}$
PDF shape of $B \to D^{**} \ell \nu_{\ell}$	$^{+1.0}_{-1.7}$	$^{+0.7}_{-1.3}$	$^{+2.2}_{-3.3}$
PDF shape and yields of fake $D^{(*)}$	1.4	1.6	1.6
PDF shape and yields of $B \to X_c D^*$	1.1	1.2	1.1
Reconstruction efficiency ratio $\varepsilon_{norm}/\varepsilon_{sig}$	1.2	1.5	1.9
Modeling of semileptonic decay	0.2	0.2	0.3
${\cal B}(au^- o \ell^- ar u_\ell u_ au)$	0.2	0.2	0.2
Total systematic uncertainty	$^{+3.4}_{-3.5}$	$^{+4.1}_{-3.7}$	$+5.9 \\ -5.8$

Leptonic radiative $B \rightarrow l\nu\gamma$

$$\Gamma = \frac{d\Gamma}{dE_{\gamma}} = \frac{\alpha_{em}G_{\rm F}^2 m_B^4 |V_{ub}|^2}{48\pi^2} x_{\gamma}^3 (1-x_{\gamma}) [F_A^2 + F_V^2].$$

$$\begin{aligned} F_{V}(E_{\gamma}) &= \frac{Q_{u}m_{B}f_{B}}{2E_{\gamma}\lambda_{B}}R(E_{\gamma},\mu) + \left[\xi(E_{\gamma}) + \frac{Q_{b}m_{B}f_{B}}{2E_{\gamma}m_{b}} + \frac{Q_{u}m_{B}f_{B}}{(2E_{\gamma})^{2}}\right], \\ F_{A}(E_{\gamma}) &= \frac{Q_{u}m_{B}f_{B}}{2E_{\gamma}\lambda_{B}}R(E_{\gamma},\mu) + \left[\xi(E_{\gamma}) - \frac{Q_{b}m_{B}f_{B}}{2E_{\gamma}m_{b}} - \frac{Q_{u}m_{B}f_{B}}{(2E_{\gamma})^{2}} + \frac{Q_{\ell}f_{B}}{E_{\gamma}}\right], \end{aligned}$$

Beneke and Rohrwild, 2011, https://doi.org/10.1140/epjc/s10052-011-1818-8

Flavour changing neutral current

$$B \rightarrow K^{(*)}\nu\overline{\nu}$$

In BSM right handed operator for neutrinos $Q_R^{\ell} = (\bar{s}_R \gamma_\mu b_R) (\bar{\nu}_{\ell L} \gamma^\mu \nu_{\ell L})$

$$\frac{\operatorname{Br}(B \to K\nu\bar{\nu})}{\operatorname{Br}(B \to K\nu\bar{\nu})_{\mathrm{SM}}} = \frac{1}{3} \sum_{\ell} (1 - 2\eta_{\ell}) \epsilon_{\ell}^{2} ,$$
$$\frac{\operatorname{Br}(B \to K^{*}\nu\bar{\nu})}{\operatorname{Br}(B \to K^{*}\nu\bar{\nu})_{\mathrm{SM}}} = \frac{1}{3} \sum_{\ell} (1 + \kappa_{\eta}\eta_{\ell}) \epsilon_{\ell}^{2} ,$$

$$\epsilon_{\ell} = \frac{\sqrt{|C_{L}^{\ell}|^{2} + |C_{R}^{\ell}|^{2}}}{|C_{L}^{\text{SM}}|},$$
$$\eta_{\ell} = \frac{-\text{Re}\left(C_{L}^{\ell}C_{R}^{\ell*}\right)}{|C_{L}^{\ell}|^{2} + |C_{R}^{\ell}|^{2}}.$$

10/05/18