

Semileptonic B decays at Belle II Phillip Urquijo Lyon LIO "From flavour to new physics"

- April 2018
- On behalf of the Belle II Collaboration

Tree and Loop

- Belle II status and performance
- Lepton flavour universality and lepton ID
- **Tree Level B decays** (recent results)
 - $B \rightarrow \tau v X, X = D, D^*, \pi : D^*$ SemiLep tag 2016 PRD, D* Hadronic tag 2017 PRL&PRD, π 2016 PRD
 - $\mathbf{B} \rightarrow \mathbf{l} \mathbf{v} \mathbf{X}, \mathbf{X} = \mathbf{D}, \mathbf{D}^* : \mathbf{B} \rightarrow \mathbf{D} 2016 \text{ PRD},$ D* 2017 Preliminary, D** 2018 sub. to PRD
 - $B \rightarrow l \nu, l = \tau, \mu$: $B \rightarrow \mu \nu$ 2018 sub. to PRL
- Loop level B decays (recent results)
 - $B \rightarrow IIX, X = X_s, K, K^*: K(*) 2017 PRL, X_s 2016 PRL$
 - $B \rightarrow \tau I X \& B \rightarrow X \nu \nu, X = K, K^*: K(*) 2017 PRD$
- Note: France joined Belle II in 2017! (25th country to join)

Phillip URQUIJO

2

Belle II Upgrades

Central beam pipe: decreased diameter from 3cm to 2cm (Beryllium)

Vertexing: new 2 layers of pixels, upgraded 4 double-sided layers of silicon strips

Tracking: drift chamber with smaller cells, longer lever arm, faster electronics

PID: new time-of-flight (barrel) and proximity focusing aerogel (endcap) Cherenkov detectors

EM calorimetry: upgrade of electronics and processing with legacy CsI(Tl) crystals

 K_L and μ : scintillators replace RPCs (endcap and inner two layers of barrel)

SuperKEKB / Belle II Luminosity projections

Phase 2:

Peak luminosity reaches **1 x 10³⁴ cm⁻²s⁻¹** (Belle) **20 fb**⁻¹ for physics near Y(4S)

March 2018: First beams.

April 2018: First collisions

July 2018: End of commissioning run.

Verification of nano-beam scheme understand beam bkg in VXD volume

> Phase 3: **50 ab⁻¹** by 2025 50x Belle, 100x Babar

Early 2019: "Phase 3"

All 2018 dates are tentative

Phillip URQUIJO

MELBOURNE

Detector installation activities

Belle II Roll-in

ARICH installation

Readout integration: cosmic

Lyon 2018, Belle II

QCS solenoid

SVD Ladder mount

Start of Phase II

<u>Control room, 14/2/2018</u>

Zoom

234567

9 10 11 12 13 14

= 1234

= 1 2 3 4

26 27 28 29 30 31

SVD hits

Cosmic rays

LER and HER current: 16 April 2018

LER

http://wwwlinac.kek.jp/skekb/ snapshot/ring.html

Phillip URQUIJO

7

Muon identification

- Muons are the easiest to identify
 - Little to **no radiation** (heavy)
 - **Stable** within particle detectors
 - No strong interactions in absorber material
 - In B-factories, need p > 700 MeV/c to reach muon detectors
- ECL not used for μ ID at Belle \rightarrow to be used in Belle II.

1.5 2 2.5 3 3.5

4.5

4

φ [deg]

Electron identification

- - **Bremsstrahlung** in material is likely
- Belle II: TOP, ARICH, dE/dx, ECL-shower profile

Tau identification (reconstruction)

- Identification / reconstruction of τ leptons is very challenging
 - Short lifetime of 10⁻¹² s
 - Hadronic decay with **π's and 1 v**
 - Leptonic decay with e/μ and 2 v

• Lack of full reconstruction implies **background mimics the the signal where some** daughters are lost e.g. K_L , π^0 . Often difficult to constrain with "sideband" data.

Beam background (N

 \triangleleft

[Sŋ

verage Energy per Crystal [MeV /

B-factory Approaches to Measuring $B \rightarrow X l v$

Untagged

initial 4-momentum known missing 4-momentum = vReconstruct $B \rightarrow X_q l v$ Use other side to constrain B flight direction.

Fully Reconstructed Tag

One B reconstructed completely in a known b \rightarrow c mode without v. "B-meson Beam"

B-factory Approaches to Measuring $B \rightarrow X l v$

initial 4-momentum known missing 4-momentum = vReconstruct $B \rightarrow X_q l v$ Use other side to constrain B flight direction.

Fully Reconstructed Tag

One B reconstructed completely in a known b \rightarrow c mode without v. "B-meson Beam"

$$\begin{bmatrix} \frac{n}{\overline{n}} p^{D^*} - p_\ell \end{bmatrix}^2 = (p_\nu)^2 = m_{\text{miss}}^2 \backsim 0$$

Hadronic tagging

Tag algorithm date	MVA	Efficiency	Puri
Belle v1 (2004)	Cut-based (Vcb)	_	-
Belle v3 (2007)	Cut-based	0.1	0.2
Belle NB (2011)	Neurobayes	0.2	0.2
Belle II FEI (2017)	Fast BoostedDecisionTree	0.5	0.2

Below line: not used in Belle NB tag.

B-> D* $\tau \nu$: τ Polarisation with $\tau \rightarrow \pi \nu$, hadronic tag Belle PRL 118, 211801 (2017) Belle PRD 97, 012004 (2018)

First measurement, consistent with SM.

Lyon 2018, Belle II

- $B \pm \rightarrow D^* \tau + \nu : 210 \pm 27 (stat)$ events

$B \rightarrow D^* \tau \nu$ with semi-leptonic tag, $\tau \rightarrow l \nu \nu$

• Signal/Normalisation separation based on $\cos \theta_{B-D^*l}$

Belle PRD 94, 072007 (2016)

Phillip URQUIJO

THE UNIVERSITY OF MELBOURNE

$B \rightarrow D^* \tau \nu$ with semi leptonic tag, $\tau \rightarrow$

- 772M B<u>B</u> pairs
- 2D binned fit to E_{ECL} and O_{NB}
 - B0 \rightarrow D^{*-} τ + v : 231±23(stat) events B0 \rightarrow D^{*-} l+ v: 2800±57(stat.) events.
- $R(D^*) = 0.302 \pm 0.030 \pm 0.011$

$B \rightarrow D(*) \tau \nu$ measurements @ Y(4S)

Target measurements

• R_{D^*} , R_D , $P(\tau)$, $P(D^*)$, $d\Gamma/dq^2$, $d\Gamma/dp_D$, $d\Gamma/dp_l$

Experiment	Tag method	τmode	R _D	R _D *	ρ
Belle 07*	Inclusive	ενν, πν	Λ 20⊥Λ 11		
Belle 10*	Inclusive	ινν, πν	U.30±U.11	0.34±0.08	_
Babar 12	Hadronic	Ινν	0.440±0.058±0.042	0.332±0.024±0.018	-0.27
Belle 15	Hadronic	Ινν	0.375±0.064±0.026	0.293±0.038±0.015	-0.32
Belle 16	Semileptonic	Ινν	IN PROGRESS	0.302±0.030±0.011	-
Belle 17	Hadronic	πν,ρν		0.270±0.035±0.027	-
LHCb 16		ινν		0.336±0.027±0.030	_
LHCb 17		3πν		0.286±0.019±0.033	_
Belle ave.	SL+Had	—	0.374±0.061	0.292±0.020±0.012	-0.29

Belle inclusive not in average (cannot accurately account for correlations). I symmetrised some errors for this table.

Leading systematic uncertainties (Belle)

Must better understand $B \rightarrow D^{**} l v$ background •

			Had tag	Had tag	Had tag	• $B^+ \rightarrow D^{(*)} \pi^+ l \nu$ (1.4k signal)
	Experiment	SL tag R_{D^*}	R _{D*} , ⊤→h v	R _D *, ⊤→I v v	R _D , ⊤→l v v	• $B^0 \rightarrow D^{(*)} \pi^+ l \nu$ (1.1k signal)
1	MC statistics	2.2	3.5	-	-	• $\mathcal{B}(B^+ \to D^- \pi^+ \ell^+ \nu)$ = $[4.55 \pm 0.27 \text{ (stat.)} \pm 0.39 \text{ (syst.)}] \times 10^{-3},$
2	$B \rightarrow D^{**} l v modelling$	+1, -1.7	2.4	1.5	4.2	• $\mathcal{B}(B^0 \to \bar{D}^0 \pi^- \ell^+ \nu)$
3	$B \rightarrow D^* l v$	+1.3, -0.2	2.3	-	_	$= [4.05 \pm 0.36 \text{ (stat.)} \pm 0.41 \text{ (syst.)}] \times 10^{-3},$
4	D** decay modes	(in 2)	(in 2)	1.3	3.0	• $\mathcal{B}(B^+ \to D^{*-}\pi^+\ell^+\nu)$ = $[6.03 \pm 0.43 \text{ (stat.)} \pm 0.38 \text{ (syst.)}] \times 10^{-3}$,
5	Hadronic B decays	1.1	7.3	-	-	• $\mathcal{B}(B^0 \to \bar{D}^{*0} \pi^- \ell^+ \nu)$
6	$B \rightarrow D^{**} \tau \nu$	(in 2)	(in 2)	-	-	$= [0.40 \pm 0.53 \text{ (Stat.)} \pm 0.52 \text{ (Syst.)}] \times 10^{-5}.$
7	Fake D ^(*)	1.4	0.2	0.3	0.5	$ \begin{array}{c} O & 120 \\ O & 0 \\ O \\$
8	Fake lepton	_	_	0.6	0.5	$\begin{array}{c} & & \\$
9	Lepton ID	1.2	1.8	0.5	0.5	
10	τBr	0.2	0.3	0.2	0.2	
11	Other	-	2.3	-	_	
	Total	3.5	9.9	5.2	7.1	
				1	1	$M_v^2 [(GeV/c^2)^2]$ M_v^2

•	NEW	hadron	ic tag	analysis
---	-----	--------	--------	----------

Novel measurements (not yet done at Belle)

Measurements

- Full differential measurements with systematics.
- R(D) with semileptonic tag ** (Belle).
- Inclusive-tag measurements (revisited with improved sys. errors).
- Channels with $\tau \rightarrow 3 \pi \nu$.
- $B \rightarrow D^{**} \tau \nu$.
- (Inclusive) $B \rightarrow X \tau v$,
- CP violation with triple product
- More effort to directly discriminate VL, VL, SL, SR, T-LQ scenarios.
- **Complementary Measurements**
 - $(B_s) Bs \rightarrow Ds^{**} Iv, Bs \rightarrow Ds \tau v,$
 - (D^{**}) Many more $B \rightarrow D^{**}$ l v measurements
 - $(b \rightarrow u) B \rightarrow \pi \tau v, \rho \tau v$ studied but not yet 3 σ .

MELBOURNE

Belle II Projections

	ΔR(D) [%]			ΔF	R(D*) [9	%]
	Stat	Sys	Total	Stat	Sys	Total
Belle 0.7 ab-1	14	6	16	6	3	7
Belle II 5 ab-1	5	3	6	2	2	3
Belle II 50 ab ⁻¹	2	3	3	1	2	2

- Full sim sensitivity studies in progress.
- Projections based on Belle + assumed R(D)_{SL} precision
- Background modelling will dominate error @ 50 ab⁻¹.

NP H±

LFUV in e/μ , and Model Independent SL Form Factors

 $\frac{d\Gamma}{dw}(B \to D\ell\nu) \sim (\text{Phase Space})|V_{cb}|^2 G(w)^2$ $\frac{d\Gamma}{dw}(B \to D^* \ell \nu) \sim (\text{Phase Space}) |V_{cb}|^2 F(w)$

BGL. Bovd. Grinstein. Lebed Phys.Rev.Lett 74, 4603 (1995)

$$F_i(w) = \frac{p_i(w)}{B_i(z)\phi_i(z)} \sum_{n=0}^N a_n^{(i)} z^n \qquad z = (\sqrt{w+1} - \sqrt{2})/(\sqrt{w+1} + \sqrt{2})$$

CLN, Caprini, Lellouch, Neubert Nucl. Phys. B530, 153 (1998) $G(w) = G(1)[1 - 8\rho^2 z + (51\rho^2 - 10)z^2 - (252\rho^2 - 84)z^3]$

- $|V_{cb}| = (42.19)$
- $|V_{cb}| = (39.05 =$
- $|V_{cb}| = (39.18)$

HFLAV (CLN)

$$(v)^2 \sum_{i=+,0,-} |H_i(w)|^2$$

$$\pm 0.78) \cdot 10^{-3} \qquad \text{from} \quad B \to X$$

$$\pm 0.47_{\text{exp}} \pm 0.58_{\text{th}}) \cdot 10^{-3} \qquad \text{from} \quad B \to D$$

$$\pm 0.94_{\text{exp}} \pm 0.36_{\text{th}}) \cdot 10^{-3} \qquad \text{from} \quad B \to D$$

$$w = \frac{m_B^2 + m_D^2 - m_B^2}{2m_B m_d}$$

21

Model independent measurements

- Hadronic tag, tag calibration with $B \rightarrow X l v$

Belle arXiv:1702.01521 Bigi et al., arXiv:1703.06124

+ lattice Dat	a + lattice + LCSR	CLN Fit:	Data + lattice	Data + lattice -
.9/32	31.4/35	$\chi^2/{ m dof}$	34.3/36	34.8/39
$7 \begin{pmatrix} +20\\ -21 \end{pmatrix}$	$0.0404 \begin{pmatrix} +16\\ -17 \end{pmatrix}$	$ V_{cb} $	0.0382(15)	0.0382(14)

Towards ultimate precision for $B \rightarrow D(*) l v$

Tag Method	Dlν	D*lv
Br [10 ⁻²]	2.31	4.95
Errors	%	%
Track	1.60	1.6
Slow track		0.1
eID	1 00	0.2 (in tag)
μID	1.00	0.1 (in tag)
fake leptons	< 0.1	< 0.1
B→D**lv, FF	0.70	< 0.1
B→D**lv, Bfs	0.80	0.2
D ^(*) Bfs	1.80	0.5
PDFs	0.50	0.9
Tag calibration	3.30	3.6
N _{BB}	1.40	1.4
f +0		1.1
τ _B	0.20	0
π ⁰ efficiency	0.60	0.5
Total	4.6	4.5
Stat	1.3	2.2

- How do we improve $B \rightarrow D(*) \mid v$ further?

 - Errors on tracking, PID, π^0 efficiencies are data driven. • D* Slow pion Tracking in Belle II ~2x efficient < 100 MeV.

Full B reco. calibration error can be improved by choosing cleaner modes (low stat. modes).

Naive Belle II projections

- Most errors cancel in LFUV measurement, except for eID, µID [data driven errors]
- $B \rightarrow D^* l v$,
 - $|V_{cb}|$ Experiment Error : $3\% \rightarrow 1\%$
 - $R_{e/\mu}$: 5% approx. $\rightarrow \sim 1\%$
- $B \rightarrow D l v$,
 - $|V_{cb}|$ Experiment Error $3\% \rightarrow 1\%$
 - $R_{e/\mu}$: (6% approx.) $\rightarrow \sim 1\%$
- $B \rightarrow D^{**} l v$
 - Exclusive modes never done comprehensively at B-factories. A long way to go to eliminate this as bias on $B \rightarrow D(*) \tau v$.

Phillip URQUIJO

THE UNIVERSITY OF MELBOURNE

$D \rightarrow S$

- LHCb excellent for $B \rightarrow K^{*0} \mu^+ \mu^-$ and $B \rightarrow K^+ \mu^+ \mu^-$ but what can we learn from Belle II?
- same sign (Majorana).
 - $B \rightarrow K^{(*)} []$
 - $l = e, \mu, \tau$ [particularly good for electrons]
 - $K^{*+} \rightarrow K^{+}\pi^{0}, K_{S}\pi^{+}, K_{L}\pi^{+}$ $K^{*0} \rightarrow K^{+}\pi^{-}, K_{S}\pi^{0}, K_{L}\pi^{0}$ [CP eigenstates] $K = K^{\pm}, K_{S}, K_{L}$
 - $B \rightarrow K^{(*)} [l', l(') = e, \mu, \tau]$
 - $B \rightarrow X_s$ l l via sum of exclusive modes, and B-tagged fully inclusive
- Additional constraints from $B \rightarrow X_s \gamma$, K* γ

BRs, direct CPV, differentials, isospin asymmetries, angular analyses, time dependent CPV,

$B \rightarrow K^*ll$, efficiencies of modes with neutrals

- $B \rightarrow K^+\pi^- l^+ l^-$ dominates
- Other modes used for A_I , A_{CP} , ΔA_{CP}
 - B→K*(892)ee 200 events/ab⁻¹
 - B→K*(892)µµ 280 events/ab⁻¹
- Note: excellent m_{bc} resolution!

Belle, Phys. Rev. Lett 119, 171801 (2017)

Efficiencies	combined
$B^+ \rightarrow (K^+ \pi^0) e^+ e^-$	4.595 ± 0.001
$B^+ \rightarrow (K^0 \pi^+) e^+ e^-$	3.951 ± 0.001
$B^+ \rightarrow (K^+ \pi^0) \mu^+ \mu^-$	4.884 ± 0.001
$B^+ \rightarrow (K^0 \pi^+) \mu^+ \mu^-$	4.203 ± 0.001
$B^+ \to K^*(892)^+ e^+ e^-$	4.161 ± 0.001
$B^+ \to K^*(892)^+ \mu^+ \mu^-$	4.426 ± 0.001
$B^0 \rightarrow (K^+\pi^-)e^+e^-$	13.934 ± 0.002
$B^0 \rightarrow (K^0 \pi^0) e^+ e^-$	1.333 ± 0.001
$B^0 \rightarrow (K^+\pi^-)\mu^+\mu^-$	23.207 ± 0.002
$B^0 \to (K^0 \pi^0) \mu^+ \mu^-$	2.606 ± 0.001
$B^0 \to K^*(892)^0 e^+ e^-$	9.693 ± 0.001
$B^0 \to K^*(892)^0 \mu^+ \mu^-$	16.335 ± 0.001

Projection

LHCb values based on naive run-1 extrapolation (not official) Belle II scenarios due to operating conditions at **KEK**

** Consider it as a sketch to show Belle II can provide confirmation of any persistent anomaly.

Inclusive analyses

• $B \rightarrow X_s l^+ l^-: 50\%$ of rate

Belle, Phys.Rev. D93 032008 (2016)

$B \rightarrow X_s l^+ l^-$ inclusive

Table 5: The Belle II sensitivities of the observables for the inclusive $B \to X_s \ell \ell$.

Observables	Belle 0.71 ab^{-1}	Belle II 5 ab^{-1}	Belle II 50 ab^{-1}
$B(B \to X_s \ell^+ \ell^-) \ (1.0 < q^2 < 3.5 \ \text{GeV}^2)$	29%	13%	6.6%
$B(B \to X_s \ell^+ \ell^-) \ (3.5 < q^2 < 6.0 \ \text{GeV}^2)$	24%	11%	6.4%
$B(B \to X_s \ell^+ \ell^-) \ (q^2 > 14.4 \ {\rm GeV}^2)$	23%	10%	4.7%
$A_{CP}(B \to X_s \ell^+ \ell^-) \ (1.0 < q^2 < 3.5 \ \text{GeV}^2)$	26%	9.7~%	3.1~%
$A_{CP}(B \to X_s \ell^+ \ell^-) \ (3.5 < q^2 < 6.0 \ \text{GeV}^2)$	21%	7.9~%	2.6~%
$A_{CP}(B \to X_s \ell^+ \ell^-) \ (q^2 > 14.4 \ {\rm GeV}^2)$	21%	8.1~%	2.6~%
$A_{FB}(B \to X_s \ell^+ \ell^-) \ (1.0 < q^2 < 3.5 \ \text{GeV}^2)$	26%	9.7%	3.1%
$A_{FB}(B \to X_s \ell^+ \ell^-) \ (3.5 < q^2 < 6.0 \ \text{GeV}^2)$	21%	7.9%	2.6%
$A_{FB}(B \to X_s \ell^+ \ell^-) \ (q^2 > 14.4 \ \text{GeV}^2)$	19%	7.3%	2.4%
$\Delta_{CP}(A_{FB}) \ (1.0 < q^2 < 3.5 \ {\rm GeV}^2)$	52%	19%	6.1%
$\Delta_{CP}(A_{FB}) \ (3.5 < q^2 < 6.0 \ {\rm GeV}^2)$	42%	16%	5.2%
$\Delta_{CP}(A_{FB}) \ (q^2 > 14.4 \ \mathrm{GeV}^2)$	38%	15%	4.8%

Table 8: Belle II sensitivities of angular observables for the $B \to K^* \ell^+ \ell^-$ decay. Some numbers at Belle are extrapolated to 0.71 ab^{-1} . The number for each bin is needed for a global fit.

Observables	Belle 0.71 ab^{-1}	Belle II 5 ab^{-1}	Belle II 50 ab^{-1}
$R_K \ (1 < q^2 < 6 \ \mathrm{GeV^2})$	28%	11%	3.6%
$R_K \; (q^2 > 14.4 \; {\rm GeV}^2)$	30%	12%	3.6%
$R_{K^*} \ (1 < q^2 < 6 \ { m GeV}^2)$	26%	10%	3.2%
$R_{K^*} \ (q^2 > 14.4 \ {\rm GeV^2})$	24%	9.2%	2.8%
$R_{X_s} \ (1 < q^2 < 6 \ { m GeV}^2)$	32%	12%	4.0%
$R_{X_s} \ (q^2 > 14.4 \ {\rm GeV^2})$	28%	11%	3.4%

Phillip URQUIJO

B2TiP, Belle II Physics book

Belle II: $b \rightarrow s$ Loop Rare

• Wilson coefficients can be done with competitive precision to LHCb over exclusive & inclusive.

PP PVPP P

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_i (C_i O_i + C_i' O_i') + V_i^* O_i' + C_i' + C_i' O_i' + C_i' + C_i' + C_i' + C_i' + C_i' + C_i'$$

$$O_{9} = (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\ell) ,$$

$$O_{10} = (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell) ,$$

Exotic $B \rightarrow K^*A'$, $A' \rightarrow e+e-$

Phillip URQUIJO

32

$b \rightarrow s \tau \tau, b \rightarrow s \tau l, b \rightarrow s \mu e$

- $b \rightarrow s \tau \tau$: Extract from $E_{ECL/extra}$ Fit in B-tagged analysis.
- $b \rightarrow s \tau l$: Use B-tag, reconstruct K^(*) and l, remaining mass is a τ.
- $b \rightarrow s \in \mu$: Naively expect LHCb to dominate.

	-	-	-
Branching fraction	Belle 0.7 ab ⁻¹	Belle II 5 ab ⁻¹	Belle II 50 a
$B^+ \rightarrow K^+ \tau^+ \tau$	<32×10 ⁻⁵	<6.5×10 ⁻⁵	<2.0×10 ⁻⁵
$B^0 \rightarrow \tau^+ \tau$	<140×10 ⁻⁵	<30×10 ⁻⁵	<9.6×10 ⁻⁵
$B^+ \rightarrow K^+ \tau^+ e^-$			<2.1×10 ⁻⁶
$B^+ \rightarrow K^+ \tau^+ \mu^-$			<3.3×10 ⁻⁶
$B^0 \rightarrow \tau^+ e^-$			<1.6×10 ⁻⁵
$B^0 \rightarrow \tau^+ \mu^-$			<1.3×10 ⁻⁵

Branching fraction	Belle 0.12 ab ⁻¹	Belle II 0.5 ab ⁻¹	Belle II 5 ab
$B_s \rightarrow \tau^+ \tau^-$	<70×10 ⁻⁴	<24×10 ⁻⁴	<8.1×10 ⁻⁴

$B \rightarrow K^{(*)} \nu \nu$

• Best limits on $B \rightarrow K^{(*)} \vee \nu$ set by Belle semiler BR. Could be greatly enhanced in NP scenar

	0.8		
ptonic tag	0.6 -	Belle + BaBar $B \to K\nu$ Belle + BaBar $B \to K^*\nu$ Belle II $B \to K\nu\nu$ 68% (Belle II BR $(B \to K^*\nu\nu)$)	u 90% CL excl uu 90% CL exc CL allowed 68% CL allow
IOS.	0.4 -	$- \text{Belle II } B \to K^* \nu \nu \ 68\%$	CL allowed
	0.2 - NSC -		
	-0.4 -		
	-0.6 - B2TiP Book,	to be submitted	to PTEP
	-0.8 -0.6 -0.4	$-0.2 ext{ } 0.0 ext{ } 0.2 ext{ } C_L^{ m NP}/C_L^{ m SM}$	0.4 0.
Observables	Belle 0.71 ab^{-1} (0.12 ab^{-1})	Belle II 5 ab^{-1}	Belle II
$\operatorname{Br}(B^+ \to K^+ \nu \bar{\nu})$	< 450%	30%	1
${\rm Br}(B^0 \to K^{*0} \nu \bar{\nu})$	< 180%	26%	9.
$\operatorname{Br}(B^+ \to K^{*+} \nu \bar{\nu})$	< 420%	25%	9.
$F_L(B^0 \to K^{*0} \nu \bar{\nu})$	_	—	0.
$F_L(B^+ \to K^{*+} \nu \bar{\nu})$	—	—	0.
${\rm Br}(B^0 \to \nu \bar{\nu}) \times 10^6$	< 14	< 5.0	<
$Br(B_s \to \nu \bar{\nu}) \times 10^5$	< 9.7	< 4.5	<

Roadmap

Summary

- Anomalous behaviour in semileptonic B decays observed by multiple experiments violations of lepton flavour universality.
 - Belle II equally good efficiency and resolution for e and μ and good for τ decay.
 - $B \rightarrow D(*) \tau v LFUV$ tested to 2-3%, $B \rightarrow D(*) l v$ to <1%: will measure differential spectra.
 - $B \rightarrow K/K^*/Xs \mid 1.3\%$ LFUV accuracy exclusive & <u>inclusive</u>: better E_{e_-} resolution than LHCb.
- Expect first collisions in April/May 2018 ~ 2 weeks!
- **Belle II physics book to appear on arXiv in May.**

https://www.facebook.com/belle2collab https://twitter.com/belle2collab

http://live.nicovideo.jp/gate/lv312372695 (Live broadcast from April 20)

THE UNIVERSITY OF MELBOURNE

Belle II General Status and Timeline

- Verification of nano-beam scheme
 - Target L> 10³⁴ cm-2s-1

Phase 2 (w/final focusing Q, w/Belle II, w/ partial Si configuration & background monitors)

Understand beam background and its luminosity scaling - particularly in VXD volume.

Belle II Collaboration

• 784 collaborators, 106 institutions, 25 countries/regions

Lyon 2018, Belle II

Track reconstruction

- Impact parameters: σ_{d0} Belle II ~ 0.5 x σ_{d0} Babar
- Vertex: σ_z Belle II ~ 0.5 x σ_z Belle
- Mass: σ_M Belle II ~ 0.7 x σ_M Belle
- Novel silicon—dedicated tracking. Good for D* efficiencies $< p_{\pi-slow} > ~ 100$ MeV.

IP resolution

econstruction

• Beam background mitigated with wave form sampling, timing.

ECL resolution

E_{true} [GeV]

Photon and π^0 efficiencies

$B \rightarrow D l \nu tagged$

- Signal extract in 10 bins of w from M_{miss}²
- Fit ~17000 signal events, use hadron B tag
- Largest background $B \rightarrow D^* l v$
- First BGL analysis of $b \rightarrow c l v$

- Consistent results between the existing measurements.
- Challenge is that a lot of information comes from w=1 but d $\Gamma/dw \rightarrow 0$ at this point

Belle PRD 93, 032006 (2016)

			N = 4
		$a_{+,0}$	0.0126 ± 0.0001
		$a_{+,1}$	-0.094 ± 0.003
		$a_{+,2}$	0.34 ± 0.04
		$a_{+,3}$	-0.1 ± 0.6
		$a_{+,4}$	0.0 ± 1.0
	• data $B \rightarrow D/v$	$a_{0,0}$	0.0115 ± 0.0001
0 0 0	$B \rightarrow D^* l \nu$ other background	$a_{0,1}$	-0.057 ± 0.002
	1.54≤w<1.60	$a_{0,2}$	0.12 ± 0.04
		$a_{0,3}$	0.4 ± 0.7
		$a_{0,4}$	0.0 ± 1.0
		$\eta_{\rm EW} V_{cb} $	41.10 ± 1.14
		$\chi^2/n_{ m df}$	11.3/16
		Prob.	0.787
	M _{miss} (GeV [∠])		

Phillip URQUIJO

 $\mathbf{D1}$

B \rightarrow D^(*) ππ l ν

- Gap between inclusive $B \rightarrow Xc$ lv sum of known exclusive decays
- Good candidates: $B \rightarrow D(*)\pi\pi(X)lv$ (could also be $B \rightarrow D(*)\eta lv$)
- Hadronic tag, normalise to $B \rightarrow D(*) \mid v$
- Unbinned ML fit
- Closes exclusive-inclusive gap to about 1% (10% of SL rate).

Channel	$R_{\pi^{+}\pi^{-}}^{(*)} \times 10^3$	$\mathcal{B} \times 10^5$
$D^0 \pi^+ \pi^- \ell^- \overline{\nu}$	$71 \pm 13 \pm 8$	$161 \pm 30 \pm 18 =$
$D^+\pi^+\pi^-\ell^-\overline{\nu}$	$58 \pm 18 \pm 12$	$ 127 \pm 39 \pm 26 =$
$D^{*0}\pi^+\pi^-\ell^-\overline{\nu}$	$14 \pm 7 \pm 4$	$80 \pm 40 \pm 23 =$
$D^{*+}\pi^{+}\pi^{-}\ell^{-}\overline{\nu}$	$28 \pm 8 \pm 6$	$ 138 \pm 39 \pm 30 =$
$D\pi^+\pi^-\ell^-\overline{\nu}$	$67 \pm 10 \pm 8$	$152 \pm 23 \pm 18 =$
$D^*\pi^+\pi^-\ell^-\overline{\nu}$	$19 \pm 5 \pm 4$	$ 108 \pm 28 \pm 23 =$

Babar PRL 116, 041801 (2016)

Events / (0.045 GeV

43

1.5 U (GeV)

THE UNIVERSITY OF MELBOURNE

$B \rightarrow D^{**} l v$

- Reconstruct $B \rightarrow D(*)\pi^{\pm}lv$ in events tagged with hadronic B decays
- Simultaneous fit to $M(D(*)\pi)$ or $M(D(*)\pi)$ -M(D(*)), including cross-feeds
- Background yield constrained from fit to B_{tag} mass. Shapes checked on wrong-sign data combinations
- Large rate for broad states!

Decay Mode	Yield	$\epsilon_{\rm sig}(\times 10^{-4})$	$\mathcal{B}(\overline{B} \to D^{**}\ell^- \bar{\nu}_\ell) \times$
$B^- \to D_1^0 \ell^- \bar{\nu}_\ell$	165 ± 18	1.24	0.29 ± 0.0
$B^- \to D_2^{*0} \ell^- \bar{\nu}_\ell$	97 ± 16	1.44	0.15 ± 0.0
$B^- \to D_1^{\prime 0} \ell^- \bar{\nu}_\ell$	142 ± 21	1.13	0.27 ± 0.0
$B^- \to D_0^{*0} \ell^- \bar{\nu}_\ell$	137 ± 26	1.15	0.26 ± 0.0
$\overline{B}{}^0 \to D_1^+ \ell^- \bar{\nu}_\ell$	88 ± 14	0.70	0.27 ± 0.0
$\overline{B}{}^0 \to D_2^{*+} \ell^- \bar{\nu}_\ell$	29 ± 13	0.91	$0.07 \pm 0.03 \pm 0.01$
$\overline{B}{}^0 \to D_1^{\prime +} \ell^- \bar{\nu}_\ell$	86 ± 18	0.60	0.31 ± 0.0
$\overline{B}{}^0 \to D_0^{*+} \ell^- \bar{\nu}_\ell$	142 ± 26	0.70	0.44 ± 0.0

Babar PRL 101:261802 (2008)

$$\frac{\mathcal{B}(D^{**} \to D^{(*)}\pi^{\pm}) \%}{03 \pm 0.03} \\
02 \pm 0.01 \\
04 \pm 0.05 \\
05 \pm 0.04 \\
04 \pm 0.03 \\
(< 0.11 @90\% CL) \\
07 \pm 0.05$$

 0.08 ± 0.06

$B \rightarrow D^{**} l \nu$ exclusive measurements

- $B \rightarrow D^{(*)} \pi l \nu$ ultimately want to measure form factors
- Normalised with DlvorXlv
- Strong model dependence in systematics particularly broad J=1/2 modes.
- Highly stats limited (modelling errors can be overcome by measuring differentials)

Babar PRL 101:261802 (2008) Babar PRL 103:051803 (2009) Belle PRD 77:091503 (2008)

	Belle tagged J=3/2 & 1/2	Babar tag J=3/2 &
N _{BB} [10 ⁶]	657	460
Error	%	%
Tracking		1.8-2.4
Particle ID	2	1.2-1.
$\pi^0 \& \gamma Eff.$		0.2-4.
MC stats.	in stat.	_
Comb.&Cont.	_	0.2-10
Helicity corr.		A E 10
Signal model	12-22	4.5-13.
PDFs		0.2-8.
N _{BB}	-	-
D(*) Bfs	10	3-4.5
Norm	IU	4-6
Bkg	6	-
total sys	14-25	5.5-17
total stat	14-40	10-20

B \rightarrow D* τ - ν with hadronic tag, $\tau \rightarrow l \nu \nu$

- Signal/Normalisation separation based on NB classifier and M²_{Miss}
- $B \rightarrow D^{**}$ l v not directly constrained.

M. Huschle, PhD Thesis (2015) Belle PRD 92, 072014 (2015)

- $B \rightarrow D \tau^+ v$: 320 ± 50(stat. approx.) events
- $B \rightarrow D^* \tau^+ \nu : 503 \pm 65$ (stat. approx.) events (includes feed-down to D channel) Un-subtracted q² distributions

THE UNIVERSITY OF **MELBOURNE** • Hadronic modes where one particle is lost, mimics signal v

1.2

 E_{ECL} (GeV)

1.4

- Analyse B_{tag} + B_{signal} in hadronic mode & compared to MC (table)
- Highly statistics limited largest systematic error in $\tau \rightarrow \pi \nu$ analysis.

-0.5

• K_{L} Modes e.g. $B \rightarrow D^{*} \pi K_{L}$ and $D^{*} K K_{L}$ are large b may help.

0.2 0.4 0.6 0.8

0

 K_L Modes e.g. $B \rightarrow D^* \pi K_L$ and $D^* K K_L$ are large background, corrected with MC. Better K_{LID} at Belle II

$\tau \rightarrow 3 \pi \nu$

- At Belle we did an analysis of 1-prong τ decays
- We didn't try $\tau \rightarrow 3 \pi \nu$ because
 - Br($\tau \rightarrow \pi \nu + \rho \nu$) = 36%
 - Br($\tau \rightarrow 3 \pi \nu$) = 9%
 - Analysis of $\tau \rightarrow \pi \nu$ was already low in purity.
 - $\tau \rightarrow 3 \pi v$ is less sensitive to $P\tau(D^*)$ which was the main motivation $\tau \rightarrow \pi v$
- However $\tau \rightarrow 3 \pi \nu$ may be more interesting at Belle II
 - Belle II has better vertex separation expect O(40 μ m) precision on τ Vtx.
 - Access CP-odd observables.

M. Duraisamy and A. Datta, J. High Energ. Phys. 09 (2013) 059 K. Hagiwara et al., Phys. Rev. D 89, 094009 (2014)

$$\bar{B} \to D^{**} \ell \bar{\nu}$$

• $B \rightarrow \mu \nu$ untagged result finds 2.4 σ significance, compatible with SM

$\pm 2.22 \pm 1.55) \cdot 10^{-1}$ 0.7]x10⁻⁻7 at 90% C.L. 2.8 2.9 p_{μ}^{*} (GeV/c) Entries/0.04 50 0⁻000.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0_{nn}

SM prediction $\mathcal{B}(B \to \mu \nu) = (3.80 \pm 0.31) \cdot 10^{-7}$

$$\mathcal{B}(B^- \to \ell^- \bar{\nu}_\ell) = \frac{G_F^2 m_B m_\ell^2}{8\pi} \left(1 - \frac{m_\ell^2}{m_B^2}\right)^2 f_B^2 |V_{ub}|^2 \tau_B$$

 $\mathcal{B}(B^- \to \mu^- \bar{\nu}_\mu) = (6.46 \pm 2.22 \pm 1.60) \times 10^{-7}$

THE UNIVERSITY OF

Fragmentation challenge, e.f. $B^3 \rightarrow X_S \gamma$

- Rely on PYTHIA for inclusive modelling requires large in situ corrections.
- X_s mass distribution is different in $B \rightarrow X_s \gamma$ and $B \rightarrow X_s |+|-$

But we can use $B \rightarrow X_s \gamma$ data to measure fragmentation as a function of M_{Xs} and feed back to $B \rightarrow X_s |+|$ -

Belle, Phys. Rev. D 91, 052004 (2015)		$D_{a} + a$	$D_{\alpha}f_{\alpha} = 14$
		Data	Delaun
Mode Category	Definition		MC
1	$K\pi$ without π^0	4.2 ± 0.4	10.3 (+17)
2	$K\pi$ with π^0	$2.1 {\pm} 0.2$	5.4 (+19)
3	$K2\pi$ without π^0	14.5 ± 0.5	12.9 (-3.1)
4	$K2\pi$ with π^0	$24.0 {\pm} 0.7$	15.2 (-12)
5	$K3\pi$ without π^0	$8.3 {\pm} 0.8$	5.9(-3.3)
6	$K3\pi$ with π^0	16.1 ± 1.8	15.7 (-0.2)
7	$K4\pi$	11.1 ± 2.8	12.3 (+0.4)
8	$K2\pi^0$	14.4 ± 3.5	14.4 (-0.0)
9	$K\eta$	$3.2{\pm}0.8$	4.9 (+2.3)
10	3K	$2.0{\pm}0.3$	3.0 (+3.3)

