Standard model tests in modes with neutrinos

Towards the Ultimate Precision in Flavour Physics

Simon Wehle Warwick, 18.04.2018

Motivation

Standard model tests in modes with neutrinos

- Decays involving neutrinos can be sensitive to a variety of new physics models
- Experimentally extremely challenging
- We can learn lot about the origin of flavour

Illustration: W. Altmannshofer

Standard model tests in modes with neutrinos

Overview of the topics in this talk

- Leptonic B decays
- Semileptonic B decays
- **Missing Energy Channels:**
 - $B \rightarrow K^{(*)}\nu\nu$
 - $B \rightarrow \nu \nu$ •
- ► How Belle II is ideal to challenge them is charged Higgs bos decays • NP: type-II-2HDM (NP could affect this
 - · Branching fracti
 - τ polarization

B

 \bar{u}, \bar{d}

 \bar{u}, \bar{d}

SuperKEKB/Belle II commissioning

UEJI.

The Challenges

- Electron positron collider are an ideal setup for missing energy channels
 - Initial state precisely known
 - Negligible pileup
- Neutrino energy can be determined precisely

The Challenges

EM Calorimeter:

The Belle II detector

KL and muon detector: Resistive Plate Counter (barrel) Scintillator + WLSF + MPPC (end-caps)

Particle Identification Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (fwd)

electron (7GeV)

CsI(TI), waveform sampling (barrel)

Pure Csl + waveform sampling (end-caps)

Beryllium beam pipe 2cm diameter

Vertex Detector 2 layers DEPFET + 4 layers DSSD

> Central Drift Chamber He(50%):C₂H₆(50%), Small cells, long lever arm, fast electronics

positron (4GeV)

Beam Background

Challenge for the experiment

 40 times higher luminosity comes at the cost of higher machine induced backgrounds

Simulation: view on the central drift chamber

DESY

use timing information of the calorimeter to reduce background

icle χ annel

nomaly...

Phys. Lett B166, 1986

^k of

Advantages at e⁺e⁻ colliders

Full Event Interpretation (FEI)

- Hierarchical approach
 - Multivariate classifier for each state
 - Gather all information in the signal probability
- FEI can provide hadronic and semileptonic final states

Maximum reconstruction efficiency			
Тад	FR @ Belle	FEI @ Belle	FEI @ Belle II
Hadronic B ⁺	0.28 %	0.49 %	0.61 %
Semileptonic B^+	0.67 %	1.42 %	1.45 %
Hadronic B ⁰	0.18 %	0.33%	0.34 %
Semileptonic B ⁰	0.63 %	1.33%	1.25 %

Full Event Interpretation

- 1. Reconstruct Tag side B meson
- 2. Reconstruct Signal Side particles
- 3. Remove associated energy from calorimeter

K^+		
π^{-} \bar{D}^{0}		******
	$\Upsilon(4S)$ B_{tag} B_{sig}	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
μ^+		K^-

Full Event Interpretation

- 1. Reconstruct Tag side B meson
- 2. Reconstruct Signal Side particles
- 3. Remove associated energy from calorimeter

K^+		· **
π^{-} \bar{D}^{0}		**************************************
	$\gamma(4S)$ B_{tag} B_{sig}	······································
μ^+		K^-

Full Event Interpretation

- 1. Reconstruct Tag side B meson
- 2. Reconstruct Signal Side particles
- 3. Remove associated energy from calorimeter

Modes with high missing energy

$$\mathcal{B}\left(\mathsf{B}^{+} \to \ell^{+} \nu\right)_{\mathrm{SM}} = \frac{G_{F}^{2} M_{\mathsf{B}} M_{\ell}^{2}}{8\pi} \left(1 - \frac{M_{\ell}^{2}}{M_{\mathsf{B}}^{2}}\right)^{2} f_{\mathsf{B}}^{2} |V_{\mathsf{ub}}|^{2} \tau_{\mathsf{B}}$$

- Direct access to V_{ub}
- Can challenge lepton flavour universality
- Can probe charged higgs

	SM Prediction	PDG 2016
$\mathcal{B}\left(B^{+} ightarrowe^{+} u_{e} ight)$	$(1.09\pm 0.21)\cdot 10^{-11}$	$< 9.8 \cdot 10^{-7} \mathrm{CL}{=}90\%$
$\mathcal{B}\left(B^+ o \mu^+ u_{\mu} ight)$	$(4.65\pm 0.91)\cdot 10^{-7}$	$< 1.0 \cdot 10^{-6} \ {\rm CL}{=}90\%$
$\mathcal{B}\left(B^+ \to \tau^+ \nu_{\tau}\right)$	$(1.03\pm 0.2)\cdot 10^{-4}$	$(1.06\pm 0.20)\cdot 10^{-4}$

The tau mode - Overview of recent measurements

- Always at leas two neutrinos in the decay
- Signature: 1 track + invisible

The tau mode

- Belle measured tau mode with semileptonic and hadronic tagging
- Tau decay modes deliver independent statistical subsamples

The tau mode

- Belle II can measure the tau mode with approx. 10% uncertainty at 5ab⁻⁵
- Better resolution, more sensitive to beam background

The muon mode

• The current status:

Table 4: The results of searches for the decay $B^- \to \mu^- \bar{\nu}_{\mu}$.

Experiment	Upper limit @ 90% C.L.	Comment
Belle $[22]$	2.7×10^{-6}	Fully reconstructed hadronic tag, 711 fb^{-1}
Belle $[15]$	1.7×10^{-6}	Untagged analysis, 253 fb^{-1}
BaBar $[16]$	$1.0 imes 10^{-6}$	Untagged analysis, $468 \times 10^6 \ B\overline{B}$ pairs

- Analysis can be performed with and without tagging
- New result from Belle untagged

The muon mode - recent Belle Measurement

- Latest Belle measurement:
- Fit ratio of:

$$R = N_{B \to \mu \bar{\nu}_{\mu}} / N_{B \to \pi \mu \bar{\nu}_{\mu}}$$

• Resulting in:

$$N_{B\to\mu\bar\nu_{\mu}} = 195 \pm 67$$

$$\mathcal{B}(B \to \mu \bar{\nu}_{\mu}) = (6.46 \pm 2.22_{\text{stat}} \pm 1.6_{\text{syst}}) \times 10^{-7}$$

SM:
$$(3.46 \pm 0.28) \times 10^{-7}$$

Tight constraints on charged higgs

Already tightly constrained by weak radiative B meson decays

$$M_{
m H^+} > 580~{
m GeV}$$

Steinhauser, https://arxiv.org/pdf/1702.04571.pdf

DESY

Belle II future

► Sensitivity to NP, ratios cancel uncertainties from f_B an V_{ub}:

$$R_{\rm ps} = \frac{\tau_{B^0}}{\tau_{B^-}} \frac{\mathcal{B}(B^- \to \tau^- \bar{\nu}_{\tau})}{\mathcal{B}(\bar{B}^0 \to \pi^+ \ell^- \bar{\nu}_{\ell})} , \quad R_{\rm pl} = \frac{\mathcal{B}(B^- \to \tau^- \bar{\nu}_{\tau})}{\mathcal{B}(B^- \to \mu^- \bar{\nu}_{\mu})} .$$

• There is much room for new physics:

$$R_{\rm ps}^{\rm NP} = (0.539 \pm 0.043) |1 + r_{\rm NP}^{\tau}|^2 \qquad R_{\rm ps}^{\rm exp} = 0.73 \pm 0.14$$
$$|1 + r_{\rm NP}^{\tau}| = 1.16 \pm 0.11$$

Belle II future

DESY.

• Projections for Belle II for $B \rightarrow \ell v$

l	$\mathcal{B}_{ ext{SM}}$	$711 { m ~fb^{-1}}$	5 ab^{-1}	$50 {\rm ~ab^{-1}}$
τ	$(7.71 \pm 0.62) \times 10^{-5}$	61179 ± 5031	430231 ± 35378	4302312 ± 353781
μ	$(3.46 \pm 0.28) \times 10^{-7}$	275 ± 23	1933 ± 159	19333 ± 1590
e	$(0.811 \pm 0.065) \times 10^{-11}$	0.0064 ± 0.0005	0.0453 ± 0.0037	0.4526 ± 0.0372

• Belle II projections for the branching ratio ratios:

$$\begin{split} R_{\rm ps}^{5\,{\rm ab}^{-1}} &= 0.54 \pm 0.11\,, \quad R_{\rm ps}^{50\,{\rm ab}^{-1}} = 0.54 \pm 0.04\,, \\ R_{\rm pl}^{5\,{\rm ab}^{-1}} &= 222 \pm 76\,, \quad R_{\rm pl}^{50\,{\rm ab}^{-1}} = 222 \pm 26\,. \end{split}$$

see B2TIP report

$$B^+ \rightarrow l^+ V_l$$

Semitauonic decays

Measurement of R_{D*}

- Combination of data from LHCb, BaBar and Belle
 - Measurement of $R_{D(^{\ast})}$ shows hints for new physics with ${\boldsymbol{\sim}}{\boldsymbol{4}}\sigma$
- Many statistically independent approaches:
 - 3 tagging methods (hadronic, semileptonic, inclusive)
 - Signal modes $(\tau \rightarrow |_{VV}, \tau \rightarrow h_V)$
- Belle II should confirm/deny this anomaly already with 5ab⁻¹

Prediction for Belle II:

	5 ab^{-1}	$50 { m ~ab^{-1}}$
R_D	$(\pm 6.0 \pm 3.9)\%$	$(\pm 2.0 \pm 2.5)\%$
R_{D^*}	$(\pm 3.0 \pm 2.5)\%$	$(\pm 1.0 \pm 2.0)\%$
$P_{\tau}(D^*)$	$\pm 0.18 \pm 0.08$	$\pm 0.06 \pm 0.04$

Semitauonic decays

Measurement of R_{D*}

- Combination of data from LHCb, BaBar and Belle
 - Measurement of $R_{D(^{\ast})}$ shows hints for new physics with $\textbf{\sim4}\sigma$
- Many statistically independent approaches:
 - 3 tagging methods (hadronic, semileptonic, inclusive)
 - Signal modes $(\tau \rightarrow |_{VV}, \tau \rightarrow h_V)$
- Belle II should confirm/deny this anomaly already with 5ab⁻¹

Prediction for Belle II:

	5 ab^{-1}	$50 {\rm ~ab^{-1}}$
R_D	$(\pm 6.0 \pm 3.9)\%$	$(\pm 2.0 \pm 2.5)\%$
R_{D^*}	$(\pm 3.0 \pm 2.5)\%$	$(\pm 1.0 \pm 2.0)\%$
$P_{\tau}(D^*)$	$\pm 0.18 \pm 0.08$	$\pm 0.06 \pm 0.04$

R(D)

V I I I

Semitauonic decays

More interesting ratios

25

B→Kvv and Missing Energy Channels

Golden modes for Belle II

Search for $B \to h^{(*)} v v$

Challenges

- Sensitive to similar NP as tension in C9:
 - $b \rightarrow s$ transition shows signs of NP
- Theoretically very clean (no charm loops)

$$egin{aligned} h^{(*)} = & \mathcal{K}^+, \mathcal{K}^0_{\mathcal{S}}, \ & \mathcal{K}^{*+}(\mathcal{K}^0_{\mathcal{S}}\pi^+, \mathcal{K}^+\pi^0), \mathcal{K}^{*0}(\mathcal{K}^+\pi^-), \ & \pi^+, \pi^0,
ho^+,
ho^0 \end{aligned}$$

Search for $B \to h^{(*)} v v$

Golden mode for Belle II

- Recent Belle measurement
- Signal extraction via template histogram fit
 - Signal, b->c, continuum, light quark pairs

Channel	Observed signal yield	Significance
$\overline{K^+ u \bar{ u}}$	$17.7 \pm 9.1 \pm 3.4$	1.9σ
$K^0_{ m S} u ar{ u}$	$0.6 \pm 4.2 \pm 1.4$	0.0σ
$K^{*+}\nu\bar{\nu}$	$16.2 \pm 7.4 \pm 1.8$	2.3σ
$K^{*0} \nu \bar{\nu}$	$-2.0 \pm 3.6 \pm 1.8$	0.0σ
$\pi^+ u ar{ u}$	$5.6 \pm 15.1 \pm 5.9$	0.0σ
$\pi^0 u ar u$	$0.2 \pm 5.6 \pm 1.6$	0.0σ
$ ho^+ u ar u$	$6.2 \pm 12.3 \pm 2.4$	0.3σ
$\frac{\rho^0\nu\bar\nu}{}$	$11.9 \pm 9.0 \pm 3.6$	1.2σ

PRD 96, 091101 (2017)

e intercept lies between 0 and -2 even his bias in our fit to data. $\rightarrow h(*)v$

Golden mode for Belle II

Belle measurement sets limits with in most chann

- (a) Belle II will be able to me branching ratios for $B \rightarrow B^{+} \rightarrow K^{+} \nu \bar{\nu}$
 - Belle II can measure the polarisation fraction F_L
- (c) $B^+ \to K^{*+} \nu \bar{\nu}$

(d)
$$B^0$$

Justine Serrano

9 b W^{-} H^{-}

First evidend 3.1σ , compa

New Belle r

=(+6.2)

New Belle measurement:

$$\Delta_{0+} = (+6.2 \pm 1.5 \pm 0.6 \pm 1.2)\%$$

A_{cp} compatil $A_{CP}(K^{*0}\gamma)$ = $A_{CP}(K^{*_+}\gamma)$:

First evidence of isospin asymetry at 3.1σ , compatible with SM

A_{cp} compatible with SM: $A_{CP}(K^{*0}\gamma) = (-1.3 \xrightarrow{\text{Phys. Rev. D 96, 091101}}{100}$ $A_{CP}(K^*\gamma)$ = $A_{CP}(K^{*+}\gamma) = (+1.1 \pm 2.3 \pm 0.3)\%$ $A_{CP}(K^*\gamma) = (-0.4 \pm 1.4 \pm 0.3)\%$

na	

lucting Corrona

Standard model tests in modes with neutrinos | Simon Wehle | 18.04.2018

Search for $B \to h^{(*)} v v$

Golden mode for Belle II

• Effective field theory \rightarrow constrain new physics across measurements

Search for $B \to h^{(\ast)} vv$ and B to invisible

Challenges

	1 . 1	1	1
Observables	Belle 0.71 ab^{-1} (0.12 ab^{-1})	Belle II 5 ab^{-1}	Belle II 50 ab^{-1}
$\operatorname{Br}(B^+ \to K^+ \nu \bar{\nu})$	< 450%	30%	11%
${\rm Br}(B^0 \to K^{*0} \nu \bar{\nu})$	< 180%	26%	9.6%
$\operatorname{Br}(B^+ \to K^{*+} \nu \bar{\nu})$	< 420%	25%	9.3%
$F_L(B^0 \to K^{*0} \nu \bar{\nu})$	—	—	0.079
$F_L(B^+ \to K^{*+} \nu \bar{\nu})$	—	—	0.077
${\rm Br}(B^0 \to \nu \bar{\nu}) \times 10^6$	< 14	< 5.0	< 1.5
$\operatorname{Br}(B_s \to \nu \bar{\nu}) \times 10^5$	< 9.7	< 1.1	—

see B2TIP report

- Belle II can probe invisible decays of B mesons
 - Irreducible background from possible dark matter candidates
 - Same effects correlated to $B \to K^{(*)} \nu \nu$
 - Can be constrained by $B \rightarrow K^{(*)}J/\psi$

Plans For Belle II

First collisions very soon soon!

DESY.

DESY.

Belle II detector during Phase 2 (2018)

Running without vertex detector

Plans For Belle II

First beams in LER and HER - First positron beam!

Plans For Belle II

First beams in LER and HER - First positron beam!

Conclusions

And Outlook

- Belle II will be able to probe new physics scenarios in many channels with neutrinos in the final state
- First data will be taken soon
- Exciting times are ahead!

【世界最強加速器SuperKEKB】電子と陽電子の初衝 突の瞬間を見守ろう KEK×niconico ^{世界最強の粒子加速器「SuperKEKB」本格始動。ファースト・コリジョン} (初の粒子衝突 LIVE.NICOVIDEO.JP

Conclusions

And Outlook

- Belle II will be able to probe new physics scenarios in many channels with neutrinos in the final state
- First data will be taken soon
- Exciting times are ahead!

Thank you very much!

Contact

DESY. Deutsches Elektronen-Synchrotron

www.desy.de

Simon Wehle Belle & Belle II simon.wehle@desy.de +49 (0)40-8998-4789

Appendix

Belle II comics run, 18.02.2018

Leptonic radiative B decays

Important probe

- The decay $B^+ \rightarrow \ell^+ \nu \gamma$ allows to probe the first inverse moment λ_B of the Light-Cone Distribution Amplitude (LCDA) of the B meson.
- Important input for QCD factorisation necessary for theory predictions of non-leptonic B meson decays

Leptonic radiative B decays

Important probe

Belle I measurement on full dataset:

Belle Result (A. Heller)
Upper Limits: $\mathcal{B}(B^+ \to e^+ \nu_e \gamma) < 6.1 \cdot 10^{-6}$ $\mathcal{B}(B^+ \to \mu^+ \nu_\mu \gamma) < 3.4 \cdot 10^{-6}$ $\mathcal{B}(B^+ \to \ell^+ \nu_\ell \gamma) < 3.5 \cdot 10^{-6}$
$\lambda_{B}>$ 238 MeV (90%C.L.)

Expected Statistical Error for ${\cal B}({ m B}^+ o\ell^+ u_\ell\gamma)=$ 5.0 $ imes$ 10 $^{-6}$				
	Belle	Belle II	Belle II	
	Improv. Analysis	5 <i>ab</i> ⁻¹	50 <i>ab</i> ⁻¹	
	+1.2	+0.46	+0.14	
	-1.32	-0.50	-0.16	

From Moriz Gelb, Cracow EPIPHANY Conference on Advances in Heavy Flavour Physics

