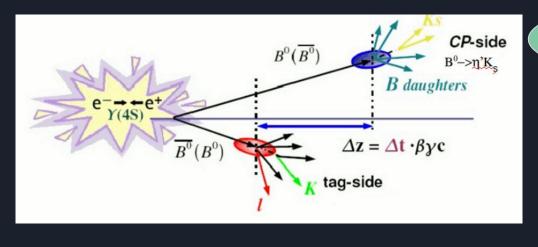
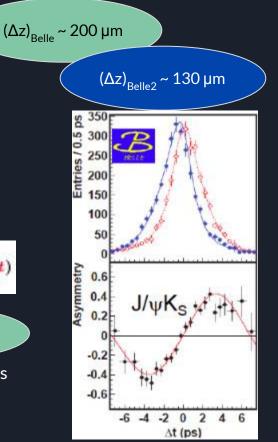


Prospects for CP violation in inclusive and exclusive B decays at Belle II


Olga Grzymkowska INP PAS, Kraków 16/04/2018

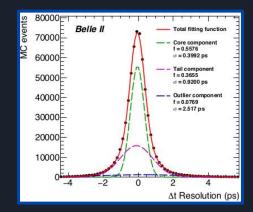


Time-dependant evolution

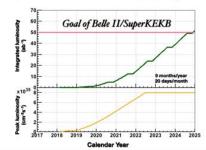
$$a_{f_{CP}}(\Delta t) \equiv \frac{\Gamma[B(\Delta t)] - \Gamma[\bar{B}(\Delta t)]}{\Gamma[B(\Delta t)] + \Gamma[\bar{B}(\Delta t)]} = C \cos(\Delta M \Delta t) - S \sin(\Delta M \Delta t)$$

Direct CPV

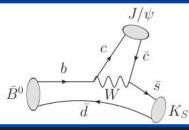
- 1. Fully reconstructed one of B mesons which decays to CP eigenstates
- 2. Tag-side determines its flavour (efficiency \approx 30%)
- 3. Proper time (Δt) is measured from decay-vertex difference (Δz).



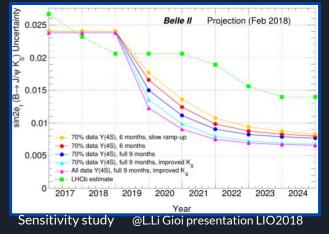
SuperKEKB and Belle II detector

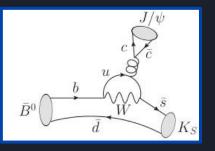

- \star Reduction in the beam size by 1/20 at the IP
- \star Doubling the beam current
- ★ $\mathcal{L}(10^{34} \text{s}^{-1} \text{ cm}^{-2}) = 80$
- ★ $\int \mathcal{L} dt (ab^{-1}) = 50$

0


- ★ Factor 2 improvement in vertexing
- Efficient flavour tagger
- \star Main improvement in performance in two areas:
 - Tracking and vertex determination;
 - Particle ID

SuperKEKB luminosity projection


sin $(2\boldsymbol{\varphi}_1)$ in tree dominated b $\rightarrow ccs$ transitions


S ~ sin (2 ϕ_1)

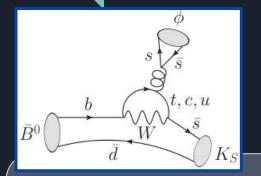
$B^0 \rightarrow J/\psi \, K_{\rm s}^{\, 0}$ is the "golden mode" for $oldsymbol{\Phi}_1$

- The expected theoretical uncertainty is small
- Experimental signature is clean (f = $J/\psi K_c^0$ is a CP eigenstate)

Belle2 expected uncertainties @ 50 ab⁻¹

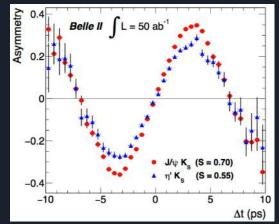
PR

Penguin pollution

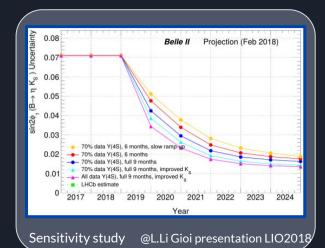

Current status from Belle

RL 108 171802	Value	$stat(10^{-3})$	$syst(10^{-3})$	stat. BelleII	syst. reduc.	syst1	syst2
$J/\psi K_S^0$ (S)	+0.67	29	13	3.5	1.2	8.2	4.4
$c\bar{c}s$ (S)	+0.667	23	12	2.7	2.6	7.0	3.6

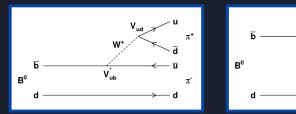

Precision better than 1% is expected on β from $b \rightarrow ccs$


 $B^{0} \rightarrow \eta' K_{s}^{0}$

 $\beta = \phi_1$



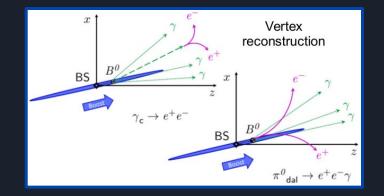
Channel	Δt resolution (ps)
$\phi(K^{+}K^{-})K^{0}_{S}(\pi^{+}\pi^{-})$	0.75
$\phi(K^+K^-)K^0_S(\pi^0\pi^0)$	0.77
$\phi(\pi^+\pi^-\pi^0)K^0_S(\pi^+\pi^-)$	0.78


Time dependent CP asymmetries for the final states J/ ψ K_s (red dots) and η 'K_s (blue triangles), using S_{J/ ψ Ks} = 0.70 and S_{n'Ks} = 0.55 as inputs to the Monte Carlo

Belle: $S_{\eta' \kappa_s^0} = +0.68 \pm 0.07 \pm 0.03$

$Φ_2$ measurement in B → ππ; ρρ

Time dependent $B^0 \rightarrow \pi^+\pi^-$ analysis measures $\phi_2^{\text{eff}} = \phi_2 + \delta \phi_2^{\text{peng}}$


 $\alpha = \phi_2$

Estimation of the penguin contribution exploiting isospin relation:

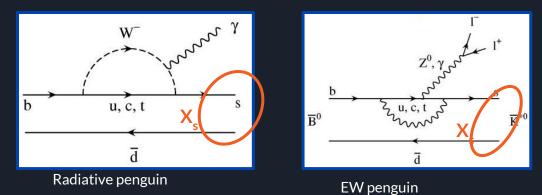
$$\begin{aligned} A^{(i,j)} &\equiv \mathcal{A}(B^{i+j} \to h^i h^j) \ (h = \pi, \rho \ / \ i, j = \pm, 0) \\ A^{+-} / \sqrt{2} + A^{00} &= A^{+0} \\ \bar{A}^{+-} / \sqrt{2} + \bar{A}^{00} &= \bar{A}^{+0} \\ &|A^{+0}| = |\bar{A}^{+0}| \end{aligned}$$

Reconstruction efficiency is crucial for $\mathsf{B} \Rightarrow \pi^{\scriptscriptstyle O} \pi^{\scriptscriptstyle O}$

•
$$B^{0}_{\text{sig}} \rightarrow \pi^{0}_{\text{YY}} (\rightarrow \gamma \gamma) \pi_{\gamma \gamma}^{0} (\rightarrow \gamma \gamma)$$

• $B^{0}_{\text{sig}} \rightarrow \pi^{0}_{\text{dal}} (\rightarrow e^{+}e^{-}\gamma) \pi_{\gamma \gamma}^{0} (\rightarrow \gamma \gamma)$
• $B^{0}_{\text{sig}} \rightarrow \pi^{0}_{\gamma c \gamma} (\rightarrow \gamma_{c}(e^{+}e^{-})\gamma) \pi_{\gamma \gamma}^{0} (\rightarrow \gamma \gamma)$

 $\Delta S(\pi^0 \pi^0) = \pm 0.28 \pm 0.03$



Inclusive B meson decays

$$\alpha_{CP}(B \to X_{s/d}\gamma) = \frac{\Gamma(\bar{B} \to X_{s/d}\gamma) - \Gamma(B \to X_{\bar{s}/\bar{d}}\gamma)}{\Gamma(\bar{B} \to X_{s/d}\gamma) + \Gamma(B \to X_{\bar{s}/\bar{d}}\gamma)}$$

In contrast to the exclusive rare B decays, the inclusive ones are theoretically clean observables and dominated by the partonic contributions.

$$\Gamma(B \to X_s \gamma) = \Gamma(b \to X_s^{parton} \gamma) + \Delta^{nonpert.}$$

 $\alpha_{_{CP}}$ = 0 in SM

Photon polarization

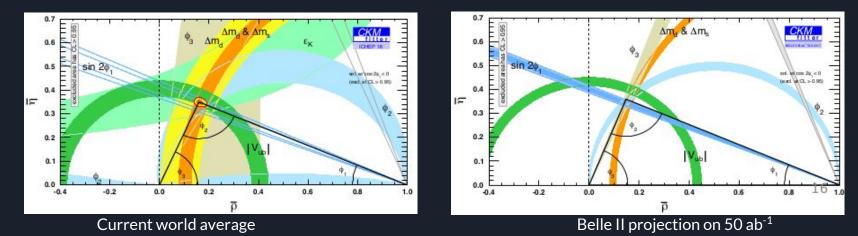
Standard Model makes definite prediction of photon helicity (D. Atwood et al., Phys. Rev. Lea. 79, 185 (1997)):

•
$$\underline{B^0} \to X_s \gamma_R$$

• $\overline{B^0} \to X_s \gamma_L$

If a helicity flip occurs, the photon will also flip its helicity, producing

$$B^0 \rightarrow X_c \gamma_1$$

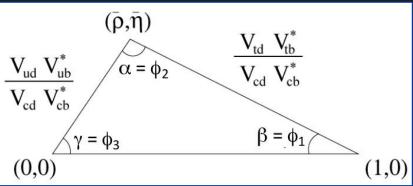

No common final state for B^0 and B^0

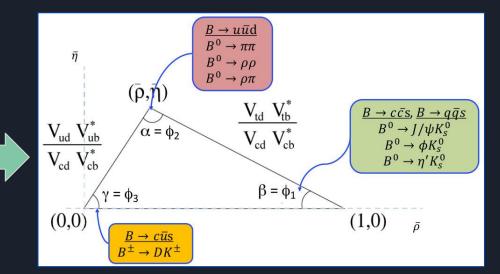
- Suppression of asymmetry S due to interference between B⁰ mixing and decay diagrams
- TD CP asymmetry measurements give an indirect measurement of photon polarization.

From the theoretical point of view the sum of the CP asymmetries in the inclusive $b \rightarrow s$ and $b \rightarrow d$ transitions turns out to be the favourable observable. On Belle II will be possible to check it experimentally.

Summary

- 1. Belle II provides a large dataset + improved detector and physics software (Flavor tagging and Vertex reconstruction).
- 2. Unique possibilities for modes with final state with neutral particles.
- 3. $\sin(2\phi_1)$ will remain the most precise measurement on the UT parameters (precision level of penguin pollution).
- 4. $\sin(2\varphi_2)$ measurement will benefit of reduced errors and new inputs for isospin analysis.
- 5. CP violation can be measured in B decays exclusively and inclusively. Exclusive approach gives up to now the most stringent test of SM.
- 6. In contrast, the inclusive ones are theoretically clean, usually zero in SM.


Thank You for Attention



Backup...

B^o unitarity triangle

Expected sensitivity at 50ab⁻¹

Channel	$\sigma(S)$		Channel	$\sigma(S)$	$\sigma(C)$
$\phi(K^+K^-)K^0_S(\pi^+\pi^-)$	0.025	0.017	$\eta'(\eta_{\gamma\gamma}\pi^{\pm})K_S^{\pm}$	0.019	0.013
$\phi(K^+K^-)K^0_S(\pi^0\pi^0)$	0.042	0.030	$rac{\eta'(\eta_{\gamma\gamma}\pi^{\pm})K^{\pm}_S}{\eta'(\eta_{3\pi}\pi^{\pm})K^{\pm}_S}$	0.035	0.025
$\phi(\pi^+\pi^-\pi^0)K^0_S(\pi^+\pi^-)$	THE PARTY OF THE PARTY OF	0.036	ILS INOUCD	0.009	0.007
$K_S^0(\pi^+\pi^-)$ modes	0.019	0.014	$K_L^{\widetilde{0}}$ modes	0.025	0.016
$K_S^0(\pi^+\pi^-) + K_L^0(\pi^+\pi^-)$ modes	0.015	0.011	$K_S^{\overline{0}} + K_L^0$ modes	0.0085	0.0063
			Syst. (10^{-2})	1.8 (1.3)	-

Backup

	Value	Belle $@ 0.8 ab^{-1}$	Belle2 @ 50 ab ⁻¹
$f_{L,\rho}^{+} + \rho^{-}$	0.988	$\pm 0.012 \pm 0.023$ [1]	$\pm 0.002 \pm 0.003$
$f_{L_{\mu}\rho}^{\mu}$	0.21	$\pm 0.20 \pm 0.15$ [2]	$\pm 0.03 \pm 0.02$
$\mathcal{B}_{0}^{+} - [10^{-6}]$	28.3	$\pm 1.5 \pm 1.5$ [1]	$\pm 0.19 \pm 0.4$
B 0 0 [10 ⁻⁶]	1.02	$\pm 0.30 \pm 0.15$ [2]	$\pm 0.04 \pm 0.02$
C_{0+0}^{-}	0.00	$\pm 0.10 \pm 0.06$ [1]	$\pm 0.01 \pm 0.01$
$S_{\rho+\rho}^{\mu+\rho-}$	-0.13	$\pm 0.15 \pm 0.05$ [1]	$\pm 0.02 \pm 0.01$
	Value	Belle $@ 0.08 ab^{-1}$	Belle2 @ 50 ab ⁻¹
$f_{L,\rho^{+}\rho^{0}}$	0.95	$\pm 0.11 \pm 0.02$ [3]	$\pm 0.004 \pm 0.003$
$\mathcal{B}_{\rho^+\rho^0}$ [10 ⁻⁶]	31.7	$\pm 7.1 \pm 5.3$ [3]	$\pm 0.3 \pm 0.5$
	Value	BaBar $@ 0.5 ab^{-1}$	Belle2 @ 50 ab ⁻¹
$C_{\rho 0 \rho 0}$	0.2	$\pm 0.8 \pm 0.3$ [4]	$\pm 0.08 \pm 0.01$
$S^{\rho}_{\rho}{}^{\rho}_{\rho}{}^{ ho}$	0.3	$\pm 0.7 \pm 0.2$ [4]	$\pm 0.07 \pm 0.01$

	Value	Belle $@$ 0.8 ab ⁻¹	Belle2 $@$ 50 ab ⁻¹
$\mathcal{B}_{\pi^{+}\pi^{-}}$ [10 ⁻⁶]	5.04	$\pm 0.21 \pm 0.18$ [2]	$\pm 0.03 \pm 0.08$
$\mathcal{B}_{\pi^0\pi^0}^{\pi^0}$ [10 ⁻⁶]	1.31	$\pm 0.19 \pm 0.18$ [1]	$\pm 0.04 \pm 0.04$
$\mathcal{B}_{\pi^+\pi^0}^{\pi^-\pi^-}$ [10 ⁻⁶]	5.86	$\pm 0.26 \pm 0.38$ [2]	$\pm 0.03 \pm 0.09$
$C_{\pi^{+}\pi^{-}}$	-0.33	$\pm 0.06 \pm 0.03$ [3]	$\pm 0.01 \pm 0.03$
$S_{-+}^{n} + -$	-0.64	$\pm 0.08 \pm 0.03$ [3]	$\pm 0.01 \pm 0.01$
$\hat{C}_{\pi^0\pi^0}$	-0.14	$\pm 0.36 \pm 0.12$ [1]	$\pm 0.03 \pm 0.01$
$S_{\pi^0\pi^0}$			$\pm 0.29 \pm 0.03$