

The progress and prospect on charm mixing

Vitaly Vorobyev

Budker Institute of Nuclear Physics

and

Novosibirsk State University

On behalf of Belle & Belle II Collaborations

2nd international workshop on High Intensity Electron-Positron Accelerator 19th March 2018, UCAS, Beijing

The charm mixing parameters

Charm forms the only neutral meson system with the heavy up quark

• Mass eigenstates

 $|D_{1,2}\rangle = p|D^0\rangle \pm q|\overline{D}{}^0\rangle, \qquad |p|^2 + |q|^2 = 1$

• The charm mixing parameters

$$x \equiv \frac{m_2 - m_1}{\Gamma}, \qquad y \equiv \frac{\Gamma_2 - \Gamma_1}{2\Gamma}, \qquad \Gamma \equiv \frac{\Gamma_1 + \Gamma_2}{2\Gamma}$$

• The observable parameter

$$\lambda_{f} \equiv \frac{q \,\bar{\mathcal{A}}_{f}}{p \,\mathcal{A}_{f}}, \qquad \mathcal{A}_{f} \equiv \langle f | \mathcal{H} | D^{0} \rangle, \qquad \bar{\mathcal{A}}_{f} \equiv \langle f | \mathcal{H} | \overline{D}^{0} \rangle$$

- \mathcal{CP} violation
 - Direct: $|\langle f | \mathcal{H} | D^0 \rangle| \neq |\langle \mathcal{CP}(f) | \mathcal{H} | \overline{D}{}^0 \rangle|$
 - In mixing: $|q/p| \neq 1$
 - In interference between mixing and decay: Im $\lambda_f \neq 0$

• The Standard Model expectation

 $x \leq y \sim \sin^2 \theta_C \times \left[SU(3)_f \text{ breaking}\right]^2$

- Clear signals of new dynamics:
 - $y \ll x \sim 1\%$
 - CP violation > 10^{-3}

Experimental status

arXiv:1612.07233

$$x = (0.32 \pm 0.14)\%$$
$$y = (0.69^{+0.06}_{-0.07})\%$$
$$|q/p| = 0.89^{+0.08}_{-0.07}$$
$$\arg(q/p) = (-12.9^{+9.9}_{-8.7})^{\circ}$$

- The first evidence by Belle and BaBar
 - Phys. Rev. Lett. 98, 211802 (2007)
 - Phys. Rev. Lett. 98, 211803 (2007)
- Charm mixing is well established
- No \mathcal{CP} violation observed in charm yet

Charm mixing observables and facilities

Charm decay rates

Time-dependent

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \text{Incoherent} \\ D^{*\pm} \rightarrow D\pi^{\pm}, & B \rightarrow DX, & e^{+}e^{-} \rightarrow c\bar{c} \rightarrow D\overline{D}X, & pp \rightarrow c\bar{c}X \\ |\langle f|\mathcal{H}|D^{0}(t)\rangle|^{2} = e^{-\Gamma t} |\mathcal{A}_{f}|^{2} \left[1 - \left(y \operatorname{Re}\lambda_{f} + x \operatorname{Im}\lambda_{f}\right)\Gamma t\right] + \mathcal{O}(x^{2}, y^{2}) \\ \downarrow |\langle f|\mathcal{H}|D^{0}\rangle|^{2} \propto |\mathcal{A}_{f}|^{2} \left(1 - y \operatorname{Re}\lambda_{f} - x \operatorname{Im}\lambda_{f}\right) + \mathcal{O}(x^{2}, y^{2}) \end{array} \end{array}$$

Time-integrated

Coherent (at rest)

 $e^{+}e^{-} \rightarrow D^{(*)0}\overline{D}^{(*)0}, \quad \mathcal{C}+: D^{0}\overline{D}^{0}\gamma, \quad \mathcal{C}-: D^{0}\overline{D}^{0}(\pi^{0})$ $\langle ij|\mathcal{H}|D^{0}\overline{D}^{0}\rangle \propto \langle i|\mathcal{H}|D^{0}\rangle\langle j|\mathcal{H}|\overline{D}^{0}\rangle + \mathcal{C}\langle i|\mathcal{H}|\overline{D}^{0}\rangle\langle j|\mathcal{H}|D^{0}\rangle$ $|\langle ij|\mathcal{H}|D^{0}\overline{D}^{0}\rangle|^{2} \propto |\mathcal{A}_{i}|^{2} |\mathcal{A}_{j}|^{2} [|\zeta_{\mathcal{C}}|^{2} + (1+\mathcal{C})(x \operatorname{Im}(\xi_{\mathcal{C}}^{*}\zeta_{\mathcal{C}}) - y \operatorname{Re}(\xi_{\mathcal{C}}^{*}\zeta_{\mathcal{C}}))] + \mathcal{O}(x^{2}, y^{2})$ $\xi_{\mathcal{C}} \equiv \frac{p}{q}(1+\mathcal{C}\lambda_{i}\lambda_{j}), \quad \zeta_{\mathcal{C}} \equiv \frac{p}{q}(\lambda_{j}+\mathcal{C}\lambda_{i})$

The progress

Selected experimental results

$$D^0 \rightarrow K\pi$$
 time-dependent WS

$$\Gamma(D^0(t) \to f_{\rm WS}) = e^{-\frac{t}{\tau}} |A_f|^2 \left[R_D + \sqrt{R_D} y' \frac{t}{\tau} + \frac{1}{2} R_M \left(\frac{t}{\tau}\right)^2 \right]$$

• BaBar [1]: 384 fb⁻¹,
$$D^{*+} \rightarrow D^0 \pi^+$$

 $y' = (9.7 \pm 4.4 \pm 3.1) \times 10^{-3}$
 $R_D = (3.03 \pm 0.19) \times 10^{-3}$
• Belle [2]: 976 fb⁻¹, $D^{*+} \rightarrow D^0 \pi^+$
 $y' = (4.6 \pm 3.4) \times 10^{-3}$
 $R_D = (3.53 \pm 0.13) \times 10^{-3}$

• LHCb [3]: 5 fb⁻¹,
$$D^{*+} \rightarrow D^0 \pi^+$$

 $y' = (5.28 \pm 0.45 \pm 0.27) \times 10^{-3}$
 ${x'}^2 = (0.039 \pm 0.023 \pm 0.014) \times 10^{-3}$
 $R_D = (3.454 \pm 0.028 \pm 0.014) \times 10^{-3}$
 $A_D = (-0.1 \pm 9.1) \times 10^{-3}$
 $1.00 < |p/q| < 1.35 @ 68.3\%$ CL

$$R_{M}\left(\frac{t}{\tau}\right)^{2}$$

$$x' \equiv x \cos \delta_{K\pi} + y \sin \delta_{K}$$

$$y' \equiv y \cos \delta_{K\pi} - x \sin \delta_{K}$$

$$R_{M} \equiv (x^{2} + y^{2})/2$$

$$R_{M} \equiv (x^{2} + y^{2})/2$$

$$R_{M} \equiv (x^{2} + y^{2})/2$$

$$R_{D}^{(+)} \equiv \frac{Br(D^{0} \to K^{+}\pi^{-})}{Br(D^{0} \to K^{-}\pi^{+})}$$

$$A_{D} \equiv \frac{(R_{D}^{+} - R_{D}^{-})}{(R_{D}^{+} + R_{D}^{-})}$$

$$R_{D}^{0} \equiv \frac{(R_{D}^{+} - R_{D}^{-})}{(R_{D}^{+} + R_{D}^{-})}$$

$$R_{D}^{0} = \frac{(R_{D}^{+} - R_{D}^{-})}{(R_{D}^{+} + R_{D}^{-})}$$

$$R_{D}^{0} \equiv \frac{(R_{D}^{+} - R_{D}^{-})}{(R_{D}^{+} + R_{D}^{-})}$$

[1] Phys. Rev. Lett. 98, 211802 (2007) (BaBar)
[2] Phys. Rev. Lett. 112, 111801 (2014) (Belle)
[3] Phys. Rev. D97, 031101(R) (2018) (LHCb)

Measurements with quantum correlations

The method exploits the difference between correlated (double tagged) and uncorrelated (single tagged) decay rates

• CLEO-c [1]: 0.82 fb⁻¹ @ ψ (3770), fit of 261 yields

 $y = (4.2 \pm 2.0 \pm 1.0)\%$ $R_D = (0.533 \pm 0.107 \pm 0.045)\%$ $\cos \delta_{K\pi} = +0.81 \pm 0.22 \pm 0.07$ $\sin \delta_{K\pi} = -0.01 \pm 0.41 \pm 0.04$

- BESIII: 2.92 fb⁻¹ @ $\psi(3770)$
 - y and R_D are taken as an external input

 $\cos \delta_{K\pi} = 1.02 \pm 0.11 \pm 0.06 \pm 0.01$

C = -1 correlations

 $\Gamma(i,j) \propto |\langle i|D_2\rangle \langle j|D_1\rangle - \langle i|D_1\rangle \langle j|D_2\rangle|^2 + \mathcal{O}(x^2,y^2)$

TABLE III.	D final	states	reconstructed	in	this	analysis.	[1]
------------	---------	--------	---------------	----	------	-----------	----	---

Time-integrated

Туре	Reconstruction	Final states
\overline{f}	Full	$K^{-}\pi^{+}, Y_{0} - Y_{7}$
$\overline{ar{f}}$	Full	$K^+ \pi^-, {ar Y}_0^ {ar Y}_7^-$
S_+	Full	$K^+K^-, \ \pi^+\pi^-, \ K^0_S\pi^0\pi^0$
S_+	Partial	$K^0_L \pi^0, K^0_L \eta, K^0_L \omega$
S_{-}	Full	$K^0_S\pi^0,K^0_S\eta,K^0_S\omega$
S_{-}	Partial	$K^0_L \pi^0 \pi^0$
ℓ^+	Partial	$K^{-}e^{+}\nu_{e}^{-}, K^{-}\mu^{+}\nu_{\mu}$
ℓ^-	Partial	$K^{+}e^{-}\bar{\nu}_{e}, K^{+}\mu^{-}\bar{\nu}_{\mu}$

Time-dependent $D^0 \rightarrow h^+h^-$

$$y_{\mathcal{CP}} \equiv \eta_{\mathcal{CP}} \frac{\widehat{\Gamma}(D^0 \to f) + \widehat{\Gamma}(\overline{D}{}^0 \to f)}{2\widehat{\Gamma}(D^0 \to K^- \pi^+)} - 1 \approx y \cos \varphi - \frac{1}{2} A_m x \sin \varphi$$

$$y_{\mathcal{CP}} \approx \frac{\tau(D^0 \to K^- \pi^+)}{\tau(D^0 \to K^- K^+)} - 1$$

• LHCb [1]*: 29 pb⁻¹, $D^{*+} \rightarrow D^0 \pi^+$ $y_{CP} = (0.55 \pm 0.63 \pm 0.41)\%$

- BaBar [2]: 468 fb⁻¹, $D^0 \to K^{\mp} \pi^{\pm}$, $K^- K^+$, $\pi^- \pi^+$ $y_{CP} = (0.72 \pm 0.18 \pm 0.12)\%$
- Belle [3]: 540 fb⁻¹, $D^0 \to K^{\mp}\pi^{\pm}$, K^-K^+ , $\pi^-\pi^+$ $y_{\mathcal{CP}} = (1.31 \pm 0.32 \pm 0.25)\%$

[1] JHEP 04, 129 (2012) (LHCb)
[2] Phys. Rev. D87, 012004 (2013) (BaBar)
[3] Phys. Rev. Lett. 98, 211803 (2007) (Belle)

*There are many other LHCb publications on \mathcal{CP} violation in the $D^0 \rightarrow h^+h^-$ modes

$D^0 \rightarrow f_{\mathcal{CP}}$ with quantum correlations

$$y_{CP} \approx \frac{1}{4} \left(\frac{\mathcal{B}(D_{\mathcal{CP}-} \to l)}{\mathcal{B}(D_{\mathcal{CP}+} \to l)} - \frac{\mathcal{B}(D_{\mathcal{CP}+} \to l)}{\mathcal{B}(D_{\mathcal{CP}-} \to l)} \right), \qquad \mathcal{B}(D_{\mathcal{CP}\mp} \to l) = \frac{N_{CP\pm;l}}{N_{CP\pm}} \cdot \frac{\varepsilon_{CP\pm;l}}{\varepsilon_{CP\pm;l}}$$

- BESIII [1]: 2.92 fb⁻¹ @ 3.773 GeV $y_{\mathcal{CP}} = (-2.0 \pm 1.3 \pm 0.7)\%$
 - Single tag: $D \to f_{CP}$
 - Quantum correlated $D\overline{D} \rightarrow f_{CP} + Kl\mu$
 - Systematic uncertainty has statistical origin

$$D^0 \to K_S^0 \pi^+ \pi^-$$
 Dalitz plot analysis

Time-dependent Dalitz plot analysis ٠ n² (GeV²/c⁴) $\mathcal{P}_{D}(t, m_{+}^{2}, m_{-}^{2}) \approx \Gamma e^{-\Gamma t} \left[|\mathcal{A}_{D}|^{2} - \Gamma t \operatorname{Re} \left(\mathcal{A}_{D}^{*} \mathcal{A}_{\overline{D}}(y + ix) \right) \right]$ Sensitivity to the charm mixing parameters due to the strong phase variation over the Dalitz plot $\mathcal{A}(m_+^2, m_-^2)$ from a $D^0 \to K_s^0 \pi^+ \pi^-$ decay model The most precise single measurement BaBar [1]: 468.5 fb⁻¹, $D^{*+} \rightarrow D^0 \pi^+$ of the charm mixing parameters m^{2} (GeV²/c⁴) $x = (0.16 \pm 0.23 \pm 0.12 \pm 0.08)\%$ $y = (0.57 \pm 0.20 \pm 0.13 \pm 0.07)\%$ 0.015 Belle [2]: 921 fb⁻¹, $D^{*+} \rightarrow D^0 \pi^+$ 10 0.01 $x = (0.56 \pm 0.19 \pm 0.08 \pm 0.08)\%$ y / 10⁻³ 0.005 $y = (0.30 \pm 0.15 \pm 0.05 \pm 0.07)\%$ $|q/p| = 0.90 \pm 0.16 \pm 0.05 \pm 0.06$ 0 [1] $\arg(q/p) = (-6 \pm 11 \pm 3 \pm 4)^{\circ}$ -0.005 -10 10 [2] 0 x / 10⁻³

[1] Phys. Rev. Lett. 105, 081803 (2010) (BaBar)[2] Phys. Rev. D89, 091103 (2014) (Belle)

12

0.015

-0.01

-0.01 -0.005

0

0.005

0.01

Model-independent Dalitz plot analysis

A way to eliminate (difficult to control) model dependency of a multibody decay analysis

- Binned time-dependent Dalitz plot analysis [1,2] $\mathcal{P}_D(t,i) \propto e^{-\Gamma t} \left[K_i - \Gamma t \sqrt{K_i K_{-i}} (C_i y + S_i x) \right]$ $\mathcal{P}_{\overline{D}}(t,i) \propto e^{-\Gamma t} \left[K_{-i} - \Gamma t \sqrt{K_i K_{-i}} (C_i y - S_i x) \right]$
- C_i and S_i are measured in coherent $D^0 \overline{D}^0$ pair decays [3]

• LHCb [4]: 1.0 fb⁻¹ @ 7 TeV, $D^{*+} \rightarrow D^0 \pi^+$ $x = (-0.86 \pm 0.53 \pm 0.17)\%$ $y = (+0.03 \pm 0.46 \pm 0.13)\%$

[1] Phys. Rev. D68, 054018 (2003)
[2] Phys. Rev. D82, 034033 (2010) (Bondar et al.)
[3] Phys. Rev. D82, 112006 (2010) (CLEO-c)
[4] JHEP 04, 033 (2016) (LHCb)

$D^0 \rightarrow K_S^0 \pi^+ \pi^-$ with quantum correlations

Coherent $C = \pm 1$ and non-coherent decays $e^+e^- \rightarrow \psi(4040) \rightarrow D\overline{D}^*$ Coherent $\mathcal{C} = -1: D^0 \overline{D}^{*0} \to D^0 \overline{D}^0 \pi^0$ $M_{ij}^{-} = K_i K_{-j} + K_{-i} K_j - 2 \left(K_i K_{-j} K_{-i} K_j (C_i C_j + S_i S_j) \right)$ Coherent $\mathcal{C} = +1: D^0 \overline{D}^{*0} \to D^0 \overline{D}^0 \gamma$ $M_{ij}^{+} = K_i K_{-j} + K_{-i} K_j - 2 \sqrt{K_i K_{-j} K_{-i} K_j (C_i C_j + S_i S_j)}$ $+2K_j\sqrt{K_iK_{-i}}(yC_i-xS_i)+2K_{-j}\sqrt{K_iK_{-i}}(yC_i+xS_i)$ $+2K_{i}\left|K_{j}K_{-j}\left(yC_{j}-xS_{j}\right)+2K_{-i}\left|K_{j}K_{-j}\left(yC_{j}+xS_{j}\right)\right.\right|$ Incoherent $D^-D^{*+} \rightarrow D^-D^0\pi^+$ $K_i' = K_i + \sqrt{K_i K_{-i}} (y C_i + x S_i)$

[1] Phys. Rev. D82, 034033 (2010)[2] Phys. Rev. D80, 072001 (2009) (CLEO-c)

Measurement of the charm mixing and the phase parameters in a single experiment

The prospects

Estimates and expectations

Future landscape

- Detector upgrade
- Trigger improvements
- Operation at higher luminosity (tens of *pp* interactions per event)

Charm production

• $\sigma(pp \rightarrow D^0 X) @ 13 \text{ TeV} \approx 2 \text{ mb}$

• $\sigma(e^+e^- \rightarrow c\bar{c}) @ \Upsilon(4S) \approx 1.3 \text{ nb}$

• $\sigma(e^+e^- \rightarrow c\bar{c}) @ \psi(3770) \approx 6 \text{ nb}$

Parameter	Belle+BaBar (1.5 ab^{-1})	Belle II (50 ab ⁻¹)	LHCb (5 fb ⁻¹)	LHCb (50 fb ⁻¹)	Super c - τ (10 ab ⁻¹)
Decay time	\checkmark				X
Incoherent decays	\checkmark		\checkmark		\checkmark
Coherent decays	×		×		\checkmark
$N(D^0 \rightarrow K^- \pi^+)$ untagged, 10^6				40000 [1]	100
$N(D^{*+} \to D^0 \pi^+, D^0 \to K^- \pi^+), 10^6$	2.5 [2]	140 [2]	100 [1]	7000 [1]	20*
$N(D^+ \to K^- \pi^+ \pi^+), 10^6$	1.2 [3]	40	150 [1]	11000 [1]	200
$N(D_s^+ o arphi \pi^+), 10^6$	0.5	17	13 [1]	1000 [1]	40

* Expected yield of $\psi(3770) \rightarrow D^0 \overline{D}{}^0 \rightarrow (K^- \pi^+)(K^+ \pi^-)$ is shown for a Super $c - \tau$ factory

[1] LHCb Collaboration, Eur. Phys. J. C73, 2373 (2013) «Implications of LHCb measurements and future prospects»

[2] Physics at Super B Factory, arXiv:1002.5012 [hep-ex]

[3] Phys. Rev. Lett. 102, 221802 (2009)

Future precision

- An order of magnitude precision improvement can be achieved in the next decade
- The numbers shown are very approximate. Analysis of systematic uncertainties is needed

[1] "Physics at Super *B* Factory", arXiv:1002.5012 [hep-ex], talk by M. Staric @ KEK FF 2014
[2] "Implications of LHCb measurements and future prospects", Eur. Phys. J. C73, 2373 (2013)
[3] A. Bondar et al., Phys. Rev. D82, 034033 (2010)

Parameter	Belle II [1] @ 50 ab ⁻¹	LHCb [2] @ 50 fb ⁻¹	Super c - τ @ 10 ab ⁻¹			
WS semileptonic						
R _M	$\mathcal{O}(5 \times 10^{-5})$	$\mathcal{O}(5 \times 10^{-7})$?			
$D \rightarrow K\pi$ WS decays						
<i>y</i> , 10 ⁻⁴			5			
<i>y</i> ′, 10 ⁻⁴	4	2				
$\cos \delta_{K\pi}$			5×10^{-3}			
$R_D, 10^{-5}$	10	0.2	1			
$A_{\rm D}, 10^{-4}$	3	?	?			
	$D ightarrow h^+ h^-$ (${\cal CP}$ eigenstates)					
$y_{\mathcal{CP}}$, 10^{-4}	4	0.4	4			
A_{Γ} , 10^{-4}	3	$\mathcal{O}(0.1)$?			
$D^0 \rightarrow K_S^0 \pi^+ \pi^-$ Dalitz plot analysis						
<i>x</i> , 10 ⁻⁴	8	1.7	O(1) [3]			
<i>y</i> , 10 ⁻⁴	5	1.9	O(1) [3]			
q/p	0.06	0.04	O(0.01) [3]			
arg(q/p)	4°	3°	$\mathcal{O}(1^\circ)$ [3]			

19

Global fit for Belle II @ $50 ab^{-1}$

Alan Schwartz, IXth CKM UT Workshop (Dec. 1, 2016)

Year 2025

Global fit for LHCb Upgr. Phase II @ 300 fb^{-1}

Conclusions

- 1. Precise measurement of the charm mixing is a fundamental test of the SM
- 2. The existing measurements are consistent with the SM expectations
- 3. LHCb and Belle II are going to
 - measure the charm mixing parameters at the precision level of $\mathcal{O}(10^{-4})$
 - access \mathcal{CP} violation in charm at the SM values ($A_{\Gamma} \sim 10^{-5}$)
- 4. A Super c- τ factory with $\mathcal{L} = 10^{35} \text{ cm}^{-2} \text{s}^{-1}$ is competitive for the charm mixing measurement
- 5. Measurements with quantum correlations will play an important role for the future charm mixing measurements