

Dark sector physics with Belle II

Peter M. Lewis for the Belle II Collaboration *University of Hawai'i at Mānoa*

22 February 2018 UCLA Dark Matter 2018

SuperKEKB

The super *B***-factory** at KEK

- First-generation *B*-factory at Tsukuba, Japan:
 - KEKB: accelerator (world record luminosity)
 - Belle: detector
- Asymmetric-energy **10.57 GeV** electron-positron collider
- Instantaneous luminosity: **8x10**³⁵ **cm**⁻²**s**⁻¹ [**40** times KEKB]
- Integrated luminosity: **50** ab⁻¹ [**50** times KEKB]
 - "Nano-beam" scheme (right, showing positron and electron bunches crossing)
 - Doubled beam currents
- First collisions this spring! Exciting times!

Belle II

Central beam pipe: 2cm diameter, Beryllium with gold coating on inside

Vertexing: new 2 layers of pixels, 4 double-sided layers of silicon strips

Tracking: 14336-wire drift chamber

PID: time-of-flight (barrel) and proximity focusing aerogel (endcap) Cherenkov detectors

EM calorimetry: CsI(Tl) crystals

 K_L and μ : scintillators (endcap and inner two layers of barrel) and RPCs (remainder of barrel)

Near-term operations

"Phase 2" run

- 2016: First beams ("Phase 1")
- Current: global cosmic run
- This spring: "**Phase 2**"
 - Primary purpose: commission nano-beams
 - Target: KEKB instantaneous luminosity (≤20fb⁻¹ integrated)
 - Vertexing detectors absent
- *But,* with **smart trigger design** we can get competitive dark sector sensitivity:
 - New trigger modes
 - Flexible trigger firmware

Dark matter searches at Belle II

(Some) Phase 2 physics prospects

• **Vector** portal: dark photon *A*' to invisible

• **Pseudoscalar** portal: axion-like particles *a* (ALPs)

Dark matter searches at Belle II

(Some) Phase 2 physics prospects

• **Vector** portal: dark photon *A*' to invisible

• **Pseudoscalar** portal: axion-like particles *a* (ALPs)

A distinctive signature

- **Single photon** from initial state radiation
- SM photon mixes with massive dark photon A'
- If DM is light enough, A' decays to invisible light DM particles
- Signature:
 - Single, mono-energetic, high-*E* photon
 - Peak in recoil mass (dark photon mass)

A special trigger

- Single-photon trigger:
 - None in Belle
 - \circ Only for short time in BaBar (53fb⁻¹)
- Advantages over BaBar:
 - More-hermetic calorimeter
 - Larger calorimeter coverage
 - Photons cannot escape between crystals due to a slight rotation in θ and φ
 - Lower energy asymmetry

Belle II Phase 2 run with single-photon trigger should be competitive

Backgrounds

- ~No true physics backgrounds
- Missing particle backgrounds:
 - $\circ \quad e^+ e^- \rightarrow \mathbf{\gamma} \gamma(\gamma)$
 - Radiative Bhabha $e^+e^- \rightarrow e^+e^-\gamma$
- Final state particles get "lost" in cracks (top)
 - BaBar had no backwards endcap calorimeter and cracks between each crystal (bottom)

A

Phase 2 expectations

- Single-photon trigger
 - \circ Exactly one cluster >1GeV, none other >300MeV
 - Rate dominated by $e^+e^- \rightarrow e^+e^-\gamma$
 - Single-photon trigger **~0.5kHz** [of **8kHz** max]
 - May be able to use in Phase 3
- Handling backgrounds
 - Peaking $e^+e^- \rightarrow \gamma \gamma(\gamma)$ dominates analysis (right)
 - The key: quantify photon efficiency
- Key strength
 - $\circ \quad Low backgrounds \rightarrow good sensitivity for \\ low-mass dark photons$

Belle II MC with 1.8GeV single-photon trigger

11

Dark photon to invisible: projected sensitivity

J. Alexander et al. (2016), arXiv:1608.08632 Natalia Toro, private comm. (2017) J.P. Lees et al., BaBar (2017), arXiv:1702.0332 B2TIP, to be submitted in PTEP (2018)

Disclaimer: relic density lines assume a standard cosmological history and that there is only a single component of dark matter, which only interacts via dark photon exchange.

Dark matter searches at Belle II

(Some) Phase 2 physics prospects

• **Vector** portal: dark photon *A*' to invisible

• **Pseudoscalar** portal: axion-like particles *a* (ALPs)

Axion-like particles

Three-photon final state

- ALPs couple to bosons
 - No relation between mass and coupling
 - **Photon** coupling g_{ayy} targetable in Phase 2
- Signature
 - Three photons > 0.1GeV in calorimeter
 - Pair of photons from $a \rightarrow \gamma \gamma$
 - Single **recoil photon**
- Search for *a*
 - \circ Bump in invariant $\gamma\gamma$ mass spectrum
 - Multiplicity of three; we don't know which photon is which

ALPs

Calorimeter signature

- Mass m_a and coupling $g_{a\gamma\gamma}$ determine
 - Displacement from collision point (r_D)
 - Opening angle θ of decay photons
- Four signatures:
 - **Resolved**: prompt decay, large θ
 - **Merged**: prompt decay, small θ
 - **Displaced**: (ignore; indistinguishable from $e^+e^- \rightarrow \gamma\gamma$)
 - **Invisible**: decay outside Belle, single-photon final state

ALPs

Phase 2 considerations

- Backgrounds
 - $e^+e^- \rightarrow \gamma\gamma(\gamma)$ with 0 or 1 γ from beam background
 - **Resolved**: $e^+e^- \rightarrow \pi^0 \gamma$, $\eta \gamma$, $\eta' \gamma$
- Trigger
 - **Resolved:** relax $e^+e^- \rightarrow \gamma\gamma$ prescale in trigger
 - **Invisible**: single-photon trigger (also captures prompt $a \rightarrow$ invisible)

ALPs: projected sensitivity

M. J. Dolan, T. Ferber, C. Hearty, F. Kahlhoefer, K. Schmidt-Hoberg, *Revised constraints and Belle II sensitivity for visible and invisible axion-like particles.* J. High Energy Phys. (2017) 2017: 94

Conclusions

Belle II dark sector

- Belle II has **unique** sensitivity to ALPs and dark photons, even in low-luminosity **Phase 2**:
 - Specially designed triggers
 - Lower background than BaBar
 - \circ ~ Complementary to searches at SHiP and LHC ~
- Other Phase 2 dark-sector searches could include:
 - \circ Dark photon \rightarrow pseudo-Dirac DM
 - Off-shell A' decays
 - Magnetic monopoles with small magnetic charges (additional slides)
 - Muonic dark force with dark boson *Z*': $e^+e^- \rightarrow \mu^+\mu^-$ Z', Z' \rightarrow invisible
- **Phase 3** (to final luminosity)
 - Can use Phase 2 trigger for early Phase 3 runs too
 - Dark photon coupling to leptons: $A' \rightarrow l^+ l^-$
 - A lot more...

Thank you!

Magnetic monopoles

Another Phase 2 specialty

- Search for magnetons with small magnetic charge
- **Distinct signature** in drift chamber: seen on-end, tracks will be **straight**
- Special trigger:
 - Trigger on any track that crosses all cells of inner drift chamber
 - Trigger in Phase 3 may be too tight
- Detection efficiency is **high**: 40-97%, depending on magneton mass

M

 \bar{M}