$ee \rightarrow \pi\pi$ cross section measurement in Belle II

Maeda Yosuke (KMI, Nagoya Univ.) for the Belle II collaboration 13th Feb, 2018 workshop on HVP contributions to muon g-2 @KEK

Fermion pair production in e⁺e⁻ collisions

light hadron production

Hadron production cross section is an important input for hadronic contribution a_{μ}^{had} of μ g-2

$\pi\pi$ cross section measurement

1.2 1.4 1.6

√s [GeV]

- Very precise measurements
 (\$1%) have been done
 by several experiments
- small discrepancy (a few %) between two measurements
 this is disturbing error shrinkage
- Confirmation by an independent experiment is necessary

$ee \rightarrow \pi\pi$ measurement at Belle II

trigger for $\pi\pi\gamma$ measurement

trigger simulation

- 100% efficiency for good events with ISR γ pointing the barrel region
 sum of all the trigger line
 - Bhabha veto is considered
 - some loss (O(%))
 for endcap,
 as designed
 (but these events are
 not used as discussed later)
- photon trigger is working effectively as expected

acceptance study

\blacksquare $\pi\pi\gamma$ acceptance as a function of ISR γ θ angle

- MC truth information is used (Phokhara generator)
- can be calculated from radiator function
- same emission probability between μ and π
- CDC acceptance
 - avoid edge regions, where tracking efficiency drops

acceptance study

- efficiency is flat for large angle ISR γ
 →by limiting ISR γ θ angle, acceptance can be kept high
 - Iose some events, but can be easily compensated by Belle II high stat.
- 10-20% loss due to momentum cut (p>1 GeV/c)
 for good muon-ID

event selection efficiency

PID algorithm

assign unique PID for each track
 require both tracks to be identified as the particle of interest
 Istudy items

 μμ ← → ππ cross feed

correlated efficiency loss

muon/pion separation

 mis-identified muons tend to be recognized as pions
 →μ-id ineff. = fake π

avoiding KLM module gaps, where id afficiency is page.

- μ -id efficiency is poor
 - \blacksquare visible in $p_T \phi$ plane
 - set veto regions
 (for barrel/endcap, positive/negative μ)
 - require at least one track to be outside of the veto regions

.5

Gev

$\mu\mu$ BG in $\pi\pi$ analysis

reduction by a factor of 5 by introduction of KLM module gap veto 9% additional efficiency loss μμ BG ratio the same level <u>background level to sum of all the modes</u> points : BaBar result open : tight cut with BaBar closed : loose cu for the roeal

0.5

correlated loss of PID eff.

- additional efficiency loss can exist due to two tracks close to each other
- compare two efficiencies
 - \square µ-id for both tracks
 - **product** of μ-id
- significant correlated efficiency loss was not seen

background processes

summary

- Precision measurement of ee→ππ cross section in Belle II is important for better understanding of muon g-2 anomaly
- Several simulation studies are performed for the ee $\rightarrow \pi \pi \gamma$ mode, which shows
 - 100% L1 trigger efficiency for events with large angle ISR
 - BG level is found to be competitive to BaBar analysis with tentative event selection and PID
- further studies
 - selection optimization
 - effect of beam background

HVP workshop for μ g-2

backup slides

BaBar trigger/filter eff. correction

BaBar tracking eff. correction

L1 trigger menu

Bit	Phase 2 description	Prescale Phase 2	Changes for 2020	Prescale 2020
0	3 or more 3D tracks			
1	2 3D tracks, ≥1 within 25 cm, not a trkBhabha		2 3D tracks, ≥1 within 10 cm, not a trkBhabha	
2	2 3D tracks, not a trkBhabha	20		20
3	2 3D tracks, trkBhabha			2
4	1 track, <25cm, clust same hemi, no 2 GeV clust		1 track, <10cm, clust same hemi, no 2 GeV clust	
5	1 track, <25cm, clust opp hemi, no 2 GeV clust		1 track, <10cm, clust opp hemi, no 2 GeV clust	
6	≥3 clusters inc. ≥1 300 MeV, not an eclBhabha		≥3 clusters inc. ≥2 300 MeV, not an eclBhabha	
7	2 GeV E* in [4,14], not a trkBhabha			
8	2 GeV E* in [4,14], trkBhabha			2
9	2 GeV E* in 2,3,15,16, not eclBhabha			
10	2 GeV E* in 2,3,15 or 16, eclBhabha			
11	2 GeV E* in 1 or 17, not eclBhabha	10		20
12	2 GeV E* in 1 or 17, eclBhabha	10		20
13	exactly 1 E*>1 GeV and 1 E>300 MeV, in [4,15]			
14	exactly 1 E*>1 GeV and 1 E>300 MeV, in 2,3 or 16			5
15	clusters back-to-back in phi, both >250 MeV, no 2 GeV			
16	clusters back-to-back in phi, 1 <250 MeV, no 2 GeV		clust back-to-back in phi, <250 MeV, no 2 GeV, no trk>25cm	3
17	clusters back-to-back in 3D, no 2 GeV			5

[deg]

R

KLM-gap veto cut

 \Box veto regions in track p_{τ} - ϕ plane (ϕ is measured with respect to gap angle ϕ_0)

defined for each of particle charge and θ direction (endcap or barrel)

□require at least outside this veto region

> when track $\phi = 90^{\circ}$ when $\log_{T} \frac{cBR}{2p_{\rm T}}$

PID performance – µµ mode

PID performance – $\pi\pi$ mode

radiator function probability to emit ISR γ to produce a particle system (X) with mass of m

ISR luminosity

without veto cuts $(\pi\pi)$

cut optimization

	μμ efficiency	лπ → μμ BG	ππ efficiency	μμ → ππ BG
no veto cut	85.2%	0.39%	75.3%	0.83%
loose cut	80.9%	0.39%	68.7%	0.15%
tight cut	58.2%	0.40%	46.2%	0.10%

M<1 GeV/c²

tight cut (require both tracks to be outside the veto regions) loses efficiency, while background reduction is not so large

current situation of e g-2

PRL100, 120801

D measurement: $a_e^{exp} = 1159652180.73(28) \times 10^{-12} \pm 0.24 \text{ ppb}$ (Harvard U) 8th and 10th order hadronic contribution □ theory of QED calculation / α a_e (theory) = 1159652181.78(6)(4)(2)(77) × 10⁻¹² [0.67 ppb] PRL109, 111807 **QED** mass-dependent term : 2.7478(2) × 10⁻¹² □ had a_e (had.v.p.) = 1.866(10)_{exp}(5)_{rad} × 10⁻¹², 1.5 ppb $a_e(\text{NLOhad.v.p.}) = -0.2234(12)_{exp}(7)_{rad} \times 10^{-12},$ $a_e(\text{had.} l-l) = 0.035(10) \times 10^{-12},$ weak $a_{e}(\text{weak}) = 0.0297(5) \times 10^{-12}$

current situation of μ g-2

