Belle II Status

before first collisions

Racha Cheaib University of Mississippi

Rencontres de Moriond March 10-17th, 2018

What are Belle II and SuperKEKB?

e

DCI

1980

1970

Y(4S

1990

2000

e

A B-meson factory in Tsukuba, Japan.

 \mathcal{B}

- Electrons and positrons are collided at Y(4S) energy.
- Upgrade of KEKB and Belle to higher luminosities

2020

Year

 $\Upsilon(4S) = \langle bb \rangle$

SuperKEKE

LHC

EPC2

ATRO

2010

B meson

SuperKEKB: increase luminosity by a factor of 40

- 20 x smaller vertical beam size
- 2-3 x beam current

Improve detector to handle large background levels

- Established 1.5 T magnetic field
- Readout integration of installed sub-detectors central DAQ in progress.

Current Status:

- First beams circulating later in March!!!!
- Belle II Phase 2 data is only a couple of months away.
 Dark sector , Bottomonium.
- Belle II Phase 3 data will strongly contribute to the present understanding of B-anomalies and much more.
 - B→D*τν
 - □ B→ K^(*) |+|-
 - □ B→μγ
- Stay tuned!

Belle-II collaboration

BEAST-: II

- Belle-II commissioning detector to provide diverse real-time measurements of beam conditions.
- Phase-2 operation from Feb. to July, 2018
- Belle-II will generate a large amount of beam backgrounds:
 - Touschek scattering: Coulomb scattering between 2 particles in the same bunch
 - Beam-gas: scattering off residual gas atoms in the beam pipe
 - Synchotron radiation: photons emitted when electrons are bent by magnetic fields.

sensor	number	location	unique measurement
Belle II PXD	2 ladders	VXD	in-situ occupancy, full Belle II tracking, <u>vertexing</u>
Belle II SVD	4 ladders	VXD	
diamond sensors	8 diamonds	VXD	ionizing dose in VXD → BEAM abort
FANGS "LHC style" silicon pixel sensors	3 arms 15 chips	VXD	MIPs & x-rays > 10 keV @ 40 MHz → Synchrotron x-ray spectrum
CLAWS Scintillators w/ SiPMTs	2 ladders	VXD	X-rays or track counting w/ 1-ns timing → injection background
PLUME "ILC style" silicon pixels sensor	2 ladders	VXD	Two-sided silicon pixels → tracklets w/ pointing
Micro-TPC nuclear recoil detectors	8	VXD dock	fast neutrons: rate, directional & spectral information
He-3 tube neutron detectors	4	VXD dock	thermal neutrons: rate
Scintillators	40+40	around QCS	X-ray and total loss distribution versus position, → collimator adjustment
PIN diodes		around QCS	amount of beam background around QCS → collimator adjustment
FPGA	2	beam pipe	
LYSO-ECL	4+4	ECL	

TOP

Different opening angles for the same momentum

- Measure x-y position (5 mm) of photons (imaging)
- Measure precise (40 ps) time of arrival of photons (time-of-propagation); TOF from IP works additively

0

X (cm)

-10

16000

14000

12000

20

10

5

Why Belle II?

Previous B-factories have been very successful:

Complementary to LHC.

ARICH:

SuperKEKB: increase luminosity by a factor of 40

- 20 x smaller vertical beam size: "World's most complicated superconducting magnet system."
- 2-3 x beam current

Calendar Year

