

Measurements of R(D^(*)) and similar ratios

from Belle, BaBar and an outlook for Belle II

XXIV Cracow EPIPHANY Conference on Advances in Heavy Flavour Physics

 $\frac{b \to q \,\tau \bar{\nu}_{\tau}}{b \to q \,\ell \bar{\nu}_{\ell}}$ R = $\ell = e, \mu$ $R(D^{(*)}, \pi, J/\psi)$

1. How do we measure?

2. How do we predict?

3. Is it really 4σ?

1. How do we measure?

and why do we think we got it (mostly) right!

Florian Bernlochner

florian.bernlochner@kit.edu

Overview

Florian Bernlochner

$$R = \frac{b \to q \, \tau \bar{\nu}_{\tau}}{b \to q \, \ell \bar{\nu}_{\ell}}_{\ell = e, \mu}$$

1. Leptonic or Hadronic τ decays?

Some properties (e.g. τ polarisation) only accessible in hadronic decays.

2. Albeit not necessarily a rare decay of O(%) in BF, TRICKY to separate from normalisation and backgrounds

LHCb: Isolation criteria, displacement of τ, kinematics
 B-Factories: Full reconstruction of event (Tagging), matching topology, kinematics

Overview

Florian Bernlochner

3. Semileptonic decays at **B**-Factories

- ► e⁺/e⁻ collision produces Y(4S) → BB
- Fully reconstruct one of the two Bmesons ('tag') → possible to measure momentum of signal B
- Missing four-momentum (neutrinos) can be reconstructed with high precision

$$p_{\text{miss}} = (p_{\text{beam}} - p_{B\text{tag}} - p_{D^{(*)}} - p_{\ell})$$

Small efficiency (~0.2-0.4%)
 compensated by large integrated
 luminosity

BaBar Measurement of R(D(*))

- Use of $\tau \rightarrow evv$ and $\tau \rightarrow \mu vv$ to reconstruct τ -lepton
- ► Simultaneous analysis of R(D) vs. $R(D^*)$ using $B^0 \rightarrow D^* \tau v$, $B^- \rightarrow D^{*0} \tau v$, $B^0 \rightarrow D^- \tau v$, $B^- \rightarrow D^0 \tau v$
- Unbinned maximum likelihood fit in 2D to mmiss² and p^{*}

BaBar Measurement of R(D(*))

- Use of $\tau \rightarrow evv$ and $\tau \rightarrow \mu vv$ to reconstruct τ -lepton
- ► Simultaneous analysis of R(D) vs. $R(D^*)$ using $B^0 \rightarrow D^* \tau v$, $B^- \rightarrow D^{*0} \tau v$, $B^0 \rightarrow D^- \tau v$, $B^- \rightarrow D^0 \tau v$
- Unbinned maximum likelihood fit in 2D to mmiss² and p^{*}

BaBar Measurement of R(D(*))

- Use of $\tau \rightarrow evv$ and $\tau \rightarrow \mu vv$ to reconstruct τ -lepton
- ► Simultaneous analysis of R(D) vs. $R(D^*)$ using $B^0 \rightarrow D^* \tau v$, $B^- \rightarrow D^{*0} \tau v$, $B^0 \rightarrow D^- \tau v$, $B^- \rightarrow D^0 \tau v$
- Unbinned maximum likelihood fit in 2D to mmiss² and p^{*}

0.5 BaBar Measurement of R(D(*))

Phys.Rev.Lett. 109,101802 (2012) Phys.Rev.D 88, 072012 (2013)

1.5

2

▶²⁰ Use of $\tau \rightarrow evv$ and $\tau \rightarrow \mu vv$ to reconstruct τ -lepton $B^{0} \rightarrow D^{-} \tau v, B^{-} \rightarrow D^{0} \tau v$ 50

▶ 20 Unbinned maximum likelihood fit in 2D to mmiss² and p^{*}

$$\mathcal{R}(D^{(*)}) = \frac{N_{\text{sig}}}{N_{\text{norm}}} \frac{\varepsilon_{\text{norm}}}{\varepsilon_{\text{sig}}},$$

0

 $R(D) = 0.440 \pm 0.058$ (stat) ± 0.042 (syst) (2 σ from SM) $R(D^*) = 0.332 \pm 0.024$ (stat) ± 0.018 (syst) (2.7 σ from SM)

 \checkmark Combination is 3.4 σ from SM

XXIV Cracow EPIPHANY Conference on Advances in Heavy Flavour Physics

Several results using different techniques:

• $\tau \rightarrow evv$ and $\tau \rightarrow \mu vv$, hadronic tag

 $\left. \begin{array}{l} \mathsf{R}(\mathsf{D}) = 0.375 \pm 0.064 \text{ (stat)} \pm 0.026 \text{ (syst)} \\ \mathsf{R}(\mathsf{D}^*) = 0.293 \pm 0.038 \text{ (stat)} \pm 0.015 \text{ (syst)} \end{array} \right\} \text{ Analysis very similar to BaBar}$

• $\tau \rightarrow evv$ and $\tau \rightarrow \mu vv$, semileptonic tag

 $R(D^*) = 0.302 \pm 0.030$ (stat) ± 0.011 (syst)

• $\tau \rightarrow \pi v$ and $\tau \rightarrow \rho v$, hadronic tag

Florian Bernlochner

 $R(D^*) = 0.270 \pm 0.035 \text{ (stat)} \pm 0.027 \text{(syst)}$ $P\tau(D^*) = -0.38 \pm 0.51 \text{ (stat)} \pm 0.18 \text{ (syst)}$

First measurement of polarisation

Phys. Rev. D 95, 115008 (2017)

 $\begin{array}{l} R(D)_{SM} = 0.299 \pm 0.003 \\ R(D^*)_{SM} = 0.257 \pm 0.003 \end{array}$

All R(D^(*)) measurements consistent but above SM

- Use of $\tau \rightarrow evv$ and $\tau \rightarrow \mu vv$ to reconstruct τ -lepton
- ► Simultaneous analysis of R(D) vs. $R(D^*)$ using $B^0 \rightarrow D^* \tau v$, $B^- \rightarrow D^{*0} \tau v$, $B^0 \rightarrow D^- \tau v$, $B^- \rightarrow D^0 \tau v$
- Multivariate hadronic tagging algorithm with Neural Network
- Use binned likelihood fit in 2D to mmiss² and signal Neural Network

Most discriminating variable: EECL

- Use of $\tau \rightarrow evv$ and $\tau \rightarrow \mu vv$ to reconstruct τ -lepton
- ► Simultaneous analysis of R(D) vs. $R(D^*)$ using $B^0 \rightarrow D^* \tau v$, $B^- \rightarrow D^{*0} \tau v$, $B^0 \rightarrow D^- \tau v$, $B^- \rightarrow D^0 \tau v$
- Multivariate hadronic tagging algorithm with Neural Network
- Use binned likelihood fit in 2D to mmiss² and signal Neural Network

- Use of $\tau \rightarrow evv$ and $\tau \rightarrow \mu vv$ to reconstruct τ -lepton
- ► Simultaneous analysis of R(D) vs. $R(D^*)$ using $B^0 \rightarrow D^* \tau v$, $B^- \rightarrow D^{*0} \tau v$, $B^0 \rightarrow D^- \tau v$, $B^- \rightarrow D^0 \tau v$

Florian Bernlochner

- Use of $\tau \rightarrow evv$ and $\tau \rightarrow \mu vv$ to reconstruct τ -lepton
- Instead of hadronic use prompt semileptonic for tag-side reconstruction; only measures R(D*) due to large backgrounds
 - Larger BF, but less information due to tag-side neutrino

- Use of $\tau \rightarrow evv$ and $\tau \rightarrow \mu vv$ to reconstruct τ -lepton
- Instead of hadronic use prompt semileptonic for tag-side reconstruction; only measures R(D*) due to large backgrounds
 - Neural Network with Cos Θ_{B-D*l,}, m_{miss}², visible energy
- Use binned likelihood fit in 2D to EECL and Neural Network
 - Post-fit projections:

- Use of $\tau \rightarrow evv$ and $\tau \rightarrow \mu vv$ to reconstruct τ -lepton
- Instead of hadronic use prompt semileptonic for tag-side reconstruction; only measures R(D*) due to large backgrounds
 - Neural Network with Cos Θ_{B-D*l,}, m_{miss}², visible energy
- Use binned likelihood fit in 2D to EECL and Neural Network

Phys.Rev.Lett.118,211801 (2017) + [arXiv:1709.00129]

- Decay angles of $\tau \rightarrow \pi v$ and $\tau \rightarrow \rho v$ encode τ -polarisation, sensitive to NP!
 - Need to reconstruct helicity angle, but a-priorio *τ*-restframe not accessible
 - Luckily there is a relation between <(*τ*h) in *τ*v-frame and this angle
- Hadronic tagging essential to reconstruct this frame

Nice Illustration from V. Luth

- Decay angles of $\tau \rightarrow \pi v$ and $\tau \rightarrow \rho v$ encode τ -polarisation, sensitive to NP!
 - Need to reconstruct helicity angle, but a-priorio *τ*-restframe not accessible
 - Luckily there is a relation between
 (*τ*h) in *τ*v-frame and this angle

Nice Illustration from V. Luth

Signal extraction via E_{ECL} (unassigned energy in the calorimeter) and in two bins of helicity angle cosΘ_{hel} with binned likelihood fit

Phys.Rev.Lett.118,211801 (2017) + [arXiv:1709.00129]

Need to reconstruct helicity angle, but a-priorio τ -restframe not accessible

Luckily there is a relation between $<(\tau h)$ in τv -frame and this angle

τ [W]

ρ[W]

theta

\ v1

W rest frame

---->

ν2

Nice Illustration

 $/ \nu 2$

 τ rest frame

 $\rho[\tau]$

/ theta hel

-----> tau ----->

One more interesting ratio from Belle

Phys. Rev. D 93, 032007 (2016)

$$R(\pi) = \frac{\mathcal{B}(B \to \pi \tau \bar{\nu}_{\tau})}{\mathcal{B}(B \to \pi \ell \bar{\nu}_{\ell})}$$

Use Hadronic tagging and reconstruct

 $\tau \rightarrow \ell \nu \nu, \tau \rightarrow \pi \nu \nu, \tau \rightarrow \rho \nu \nu, \tau \rightarrow a_1 \nu \nu$

1D Likelihood fit in E_{ECL} R(π) = 1.05 ± 0.51

 $R(\pi)_{SM} = 0.641 \pm 0.016$

2. How do we predict?

with a focus on $R(D/D^*/\pi)$, similar things do apply though to $R(J/\Psi)$

Florian Bernlochner

florian.bernlochner@kit.edu

Form Factor Bootcamp with $B \rightarrow D\ell v$ as an example

$$f_+(q^2)$$

$$f_{-}(q^2)$$

_23

Four-momentum transfer squared encodes QCD dynamics

$H^{\mu}L_{\mu} = \langle B(p)|V^{\mu} - A^{\mu}|D(p')\rangle L_{\mu} = \left[f_{+}(q^{2})\left(p + p'\right)^{\mu} + f_{-}(q^{2})\left(p - p'\right)^{\mu}\right]L_{\mu}$

Form Factor Bootcamp with $B \rightarrow D\ell v$ as an example

$$f_{-}(q^{2})$$

24

Can be **studied** with **light lepton modes**, but also in **lattice (high q²)** or **sum rules**

Florian Bernlochner

Form Factor Bootcamp with $B \rightarrow D\ell v$ as an example

Can be **studied** with **light lepton modes**, but also in **lattice (high q²)** or **sum rules**

_25

3. Is it really 4σ ?

well, depends what you want to conclude!

Let me explain wh

Florian Bernlochner

 Let's say y
 ratios to le anomaly a could expla

XXIV Cra

Let me explain what I mean:

Let's say you want to use the measured ratios to learn something about the anomaly and your favourite model that could explain it!

-29

Let me explain what I mean:

Florian Bernlochner

 As it turns out, not that easy — the measured points themselves are extracted assuming the SM.

Let me explain what I mean:

- Why is this happening exactly?
 - Change in kinematics of final state particles (q²!)
 - Dominant effect here: *τ*-polarisation

(full explanation in backup)

You can test models against the measured ratios, but keep in mind that these results should be taken with a grain of salt

Fully consistent tests right now only possible within experiments

- You can test models against the measured ratios, but keep in mind that these results should be taken with a grain of salt
- Fully consistent tests right now only possible within experiments

Better: Experiments should extract limits on Wilson coefficients directly, that allow meaningful reinterpretation

Helicity Amplitude Module for Matrix Element Reweighting

180x.xxxxx FB, S. Duell, M. Papucci, Z. Ligeti, D. Robinson

4. Looking ahead

 $\frac{\text{BaBar data set}}{\text{CLEO data set}} \sim \frac{\frac{\text{Belle II data set}}{\text{Belle data set}}}{\frac{\text{Belle data set}}{\text{Belle data set}}} \sim \frac{50:1}{\text{LHCb 1/fb}}$

Florian Bernlochner

Belle II: a next generation B-Factory experiment

XXIV Cracow EPIPHANY Conference on Advances in Heavy Flavour Physics

Belle II ramp up Phases

- Ramp up in three phases
 - Phase I 2016: No detector over interaction region, study of beam properties
 - Phase II 2018: First collisions, but no PXD. Instead BEAST II (radiation monitoring system)
 - Phase III 2019: First Physics with full detector

About a factor of two smaller than BaBar!

Many thanks to Carlos Marinas, Patrick Ahlburg and Botho Paschen For the nice illustrations and pictures!

- At 90°, 180° and 270° in ϕ are the three **FANGS** staves
- FANGS uses the ATLAS IBL modules for background measurements at BEAST II

The trip of the BEAST II PXD modules to KER

ANAA

- 8

SE .

Side

Airplane business class with extra pillows – 4000 Eur

Bus to Tsukuba station 1.5 hr - 10 Eur

C

BEAST PXD in the Belle clean room - priceless

VXD Clean Room

Granite table with Phase 2 beam pipe + rotation stage

Warm-up phase..

First recorded collisions: April 2018 (10 weeks) to record about ~ 20/fb

Looking ahead...

J. Albrecht, FB, S. Reicher, M. Kenzie, D. Straub, A. Tully arXiv:1709.10308

54

More slides

B-Factory & LHCb future timelines

XXIV Cracow EPIPHANY Conference on Advances in Heavy Flavour Physics

All the stuff we dont want

- From the beams:
 - Touschek scattering (1): Coulomb scattering between two particles in the same bunch
 - Beam-gas (2): scattering off residual gas atoms in the beam pipe
 - Synchrotron radiation (3): photons emitted when electrons are bent by magnetic fields
- From collisions:
 - Radiative Bhabha (4)

BaBar Measurement of R(D(*))

	Fractional uncertainty (%)						Correlation		
Source of uncertainty	$\mathcal{R}(D^0)$ \mathcal{R}	$\mathcal{R}(D^{*0})$ \mathcal{P}	$R(D^+) \mathcal{R}$	$\mathcal{R}(D^{*+})$	$\mathcal{R}(D)$	$\mathcal{R}(D^*)$	D^0/D^{*0} 1	D^{+}/D^{*+}	D/D^*
Additive uncertainties									
PDFs									
MC statistics	6.5	2.9	5.7	2.7	4.4	2.0	-0.70	-0.34	-0.56
$\overline{B} \to D^{(*)}(\tau^-/\ell^-)\overline{\nu}$ FFs	0.3	0.2	0.2	0.1	0.2	0.2	-0.52	-0.13	-0.35
$D^{**} \to D^{(*)}(\pi^0/\pi^{\pm})$	0.7	0.5	0.7	0.5	0.7	0.5	0.22	0.40	0.53
$\mathcal{B}(\overline{B} \to D^{**}\ell^- \overline{\nu}_\ell)$	1.0	0.4	1.0	0.4	0.8	0.3	-0.63	-0.68	-0.58
$\mathcal{B}(\overline{B} \to D^{**}\tau^-\overline{\nu}_\tau)$	1.2	2.0	2.1	1.6	1.8	1.7	1.00	1.00	1.00
$D^{**} \to D^{(*)} \pi \pi$	2.1	2.6	2.1	2.6	2.1	2.6	0.22	0.40	0.53
Cross-feed constraints									
MC statistics	2.6	0.9	2.1	0.9	2.4	1.5	0.02	-0.02	-0.16
$f_{D^{**}}$	6.2	2.6	5.3	1.8	5.0	2.0	0.22	0.40	0.53
Feed-up/feed-down	1.9	0.5	1.6	0.2	1.3	0.4	0.29	0.51	0.47
Isospin constraints	—	_	—	_	1.2	0.3	—	_	-0.60
Fixed backgrounds									
MC statistics	4.3	2.3	4.3	1.8	3.1	1.5	-0.48	-0.05	-0.30
Efficiency corrections	4.8	3.0	4.5	2.3	3.9	2.3	-0.53	0.20	-0.28
Multiplicative uncertainties									
MC statistics	2.3	1.4	3.0	2.2	1.8	1.2	0.00	0.00	0.00
$\overline{B} \to D^{(*)}(\tau^-/\ell^-)\overline{\nu}$ FFs	1.6	0.4	1.6	0.3	1.6	0.4	0.00	0.00	0.00
Lepton PID	0.6	0.6	0.6	0.5	0.6	0.6	1.00	1.00	1.00
π^0/π^{\pm} from $D^* \to D\pi$	0.1	0.1	0.0	0.0	0.1	0.1	1.00	1.00	1.00
Detection/Reconstruction	0.7	0.7	0.7	0.7	0.7	0.7	1.00	1.00	1.00
$\mathcal{B}(au^- o \ell^- ar{ u}_\ell u_ au)$	0.2	0.2	0.2	0.2	0.2	0.2	1.00	1.00	1.00
Total syst. uncertainty	12.2	6.7	11.4	6.0	9.6	5.5	-0.21	0.10	0.05
Total stat. uncertainty	19.2	9.8	18.0	11.0	13.1	7.1	-0.59	-0.23	-0.45
Total uncertainty	22.7	11.9	21.3	12.5	16.2	9.0	-0.48	-0.15	-0.27

XXIV Cracow EPIPHANY Conference on Advances in Heavy Flavour Physics

Belle Measurements of R(D(*))

Source	$R(D^*)$	$P_{ au}(D^*)$		
Hadronic <i>B</i> composition	+7.7% -6.9%	$+0.134 \\ -0.103$		
MC statistics for PDF shape	+4.0% -2.8%	$+0.146 \\ -0.108$		
Fake D^*	3.4%	0.018		
$\bar{B} \to D^{**} \ell^- \bar{\nu}_\ell$	2.4%	0.048		
$\bar{B} \to D^{**} \tau^- \bar{\nu}_{\tau}$	1.1%	0.001		
$\bar{B} \to D^* \ell^- \bar{\nu}_\ell$	2.3%	0.007		
τ daughter and ℓ^- efficiency	1.9%	0.019		
MC statistics for efficiency estimation	1.0%	0.019		
$\mathcal{B}(\tau^- o \pi^- \nu_{ au}, \rho^- \nu_{ au})$	0.3%	0.002		
$P_{\tau}(D^*)$ correction function	0.0%	0.010		
Common sources				
Tagging efficiency correction	1.6%	0.018		
D^* reconstruction	1.4%	0.006		
Branching fractions of the D meson	0.8%	0.007		
Number of $B\bar{B}$ and $\mathcal{B}(\Upsilon(4S) \to B^+B^- \text{ or } B^0\bar{B}^0)$	0.5%	0.006		
Total systematic uncertainty	+10.4% -9.4\%	$+0.21 \\ -0.16$		

59

60

LHCb Measurements of R(D*)

Table 1: Systematic uncertainties in the extraction of $\mathcal{R}(D^*)$.

Model uncertainties	Absolute size $(\times 10^{-2})$		
Simulated sample size	2.0		
Misidentified μ template shape	1.6		
$\overline{B}{}^0 \to D^{*+}(\tau^-/\mu^-)\overline{\nu}$ form factors	0.6		
$\overline{B} \to D^{*+}H_c(\to \mu\nu X')X$ shape corrections	0.5		
$\mathcal{B}(\overline{B} \to D^{**} \tau^- \overline{\nu}_\tau) / \mathcal{B}(\overline{B} \to D^{**} \mu^- \overline{\nu}_\mu)$	0.5		
$\overline{B} \to D^{**} (\to D^* \pi \pi) \mu \nu$ shape corrections	0.4		
Corrections to simulation	0.4		
Combinatorial background shape	0.3		
$\overline{B} \to D^{**} (\to D^{*+} \pi) \mu^- \overline{\nu}_{\mu}$ form factors	0.3		
$\overline{B} \to D^{*+}(D_s \to \tau \nu) X$ fraction	0.1		
Total model uncertainty	2.8		
Normalization uncertainties	Absolute size $(\times 10^{-2})$		
Simulated sample size	0.6		
Hardware trigger efficiency	0.6		
Particle identification efficiencies	0.3		
Form-factors	0.2		
$\mathcal{B}(\tau^- \to \mu^- \overline{\nu}_\mu \nu_\tau)$	< 0.1		
Total normalization uncertainty	0.9		
Total systematic uncertainty	3.0		

Overview

4. Semileptonic decays at LHCb

- No constraint from beam energy at a hadron machine, **but..**
- Large Lorentz boost with decay lengths in the range of mm

✓ Well separated decay vertices

- Momentum direction of decaying particle is well known
- With known masses and other decay products can even reconstruct fourmomentum transfer squared q² up to a two-fold ambiguity

$$q^2 = \left(p_{X_b} - p_{X_q}\right)^2$$

Florian Bernlochner

62

Two measurements using different final states:

- $\tau \rightarrow \mu \nu \nu$ using B⁰ \rightarrow D^{*-} $\tau \nu$
- $\tau \rightarrow \pi \pi \pi (\pi^0) v$ using B⁰ \rightarrow D^{*-} τv

✓ All R(D*) measurements consistent but above SM

- First measurement at a hadron collider!
- Tau reconstructed with $\tau \rightarrow \mu V V$
- The B momentum is approximated by:

$$(\gamma \beta_z)_{\bar{B}} = (\gamma \beta_z)_{D^* \mu} \implies (p_z)_{\bar{B}} = \frac{m_B}{m(D^* \mu)} (p_z)_{D^* \mu}$$

B boost along z axis much larger than boost of decay products in B rest frame, results in a resolution of about 18% on p_B

Can be used to calculate m_{miss}² and q² = (p_B - p_D)² and boost muon in B-rest frame

63

 p_z

B vertex

Ζ

ΡV

- First measurement at a hadron collider!
- Tau reconstructed with $\tau \rightarrow \mu V V$

Florian Bernlochner

The B momentum is approximated by:

- No additional particles via MVA isolation
- Extract signal in binned 3D fit to m_{miss}², E^{*}_µ and 4 bins of q²

Simultaneously fit 3 control regions defined by isolation criteria

- Signal yield: ~16500 Events
 - B-Factories: O(1000 Events)

 $R(D^*) = 0.336 \pm 0.027$ (stat) ± 0.030 (syst)

Compatible with BaBar and Belle, but 2.1 σ from SM

arXiv:1711.02505

66

• Tau reconstructed via $\tau \rightarrow \pi^+ \pi^+ \pi^- (\pi^0) v$, only two neutrinos missing

Although a semileptonic decay is studied, nearly no background from $B \rightarrow D^* X \mu v$

• Main background: prompt $X_b \rightarrow D^* \pi \pi \pi + neutrals$

BF ~ 100 times larger than signal, all pions are promptly produced

 Suppressed by requiring minimum distance between X_b & τ vertices (> 4 σ_{Δz})

 $\sigma_{\Delta z}$: resolution of vertices separation

 Reduces this background by three orders of magnitudes

• Tau reconstructed via $\tau \rightarrow \pi^+ \pi^+ \pi^- (\pi^0) v$, only two neutrinos missing

Although a semileptonic decay is studied, nearly no background from $B \rightarrow D^* X \mu v$

- Remaining double charm bkgs:
 - $X_b \rightarrow D^* D_s^* X \sim 10 \text{ x Signal}$
 - $X_b \rightarrow D^* D^+ X \sim 1 \times \text{Signal}$

Florian Bernlochner

 $X_b \rightarrow D^{*-}D_{s0}^{+}X^{\sim}$ 0.2 x Signal

• Main background: prompt $X_b \rightarrow D^* \pi \pi \pi + neutrals$

BF ~ 100 times larger than signal, all pions are promptly produced

 Suppressed by requiring minimum distance between X_b & τ vertices (> 4 σΔz)

 $σ_{\Delta z}$: resolution of vertices separation

 Reduces this background by three orders of magnitudes

67

arXiv:1711.02505

68

Remaining backgrounds reduced via isolation & MVA

Require signal candidates to be well isolated

Selection

MVA

Purer

arXiv:1711.02505

- Components:
- **1** Signal component for $\tau \rightarrow \pi^+ \pi^- (\pi^0) v$
- **11 Background components**
- ~ 1273 ± 85 Signal events
- Using normalisation mode and light lepton BFs:

More information about normalisation in backup

R(D*) = 0.286 ± 0.019 (stat) ± 0.025 (syst) ± 0.021 (norm)

 0.9σ higher than SM

Florian Bernlochner

XXIV Cracow EPIPHANY Conference on Advances in Heavy Flavour Physics

-70

arXiv:1711.02505

• Actually measure BF relative to $B^0 \rightarrow D^* \pi^+ \pi^+ \pi^-$

$$K_{had}(D^{*}) = \frac{BR(B^{0} \to D^{*-} \tau^{+} \nu_{\tau})}{BR(B^{0} \to D^{*-} \pi^{+} \pi^{-} \pi^{+})} = \frac{N(B^{0} \to D^{*-} \tau^{+} \nu_{\tau})}{N(B^{0} \to D^{*+} \pi^{-} \pi^{+} \pi^{-})} \times \frac{1}{BR(\tau^{+} \to \pi^{+} \pi^{-} \pi^{+} (\pi^{0}) \overline{\nu}_{\tau})} \times \frac{\varepsilon(B^{0} \to D^{*+} \pi^{-} \pi^{+} \pi^{-})}{\varepsilon(B^{0} \to D^{*-} \tau^{+} \nu_{\tau})}$$

Measured to about 4% precision

most precise measurement from BaBar: Phys. Rev. D94 (2016) 091101)

Dedicated control samples for remaining backgrounds

Extraction in 3D maximum likelihood fit

to MVA : q^2 : τ decay time

Invariant masses of 3π system Invariant mass of D* 3π system Neutral isolation variables

Florian Bernlochner

Both reconstructed with some tricks (more in backup)

$$\theta_{max} = \arcsin\left(\frac{m_{\tau}^2 - m_{3\pi}^2}{2m_{\tau}|\vec{p}_{3\pi}|}\right) \qquad \theta_{max}' = \arcsin\left(\frac{m_{B^0}^2 - m_{D*\tau}^2}{2m_{B^0}|\vec{p}_{D*\tau}|}\right)$$

Florian Bernlochner

Possible to reconstruct rest frame variables such as tau decay time and q². These variables have **negligible biases**, and **sufficient resolution** to preserve good discrimination between signal and background.

Slide from C. Bozzi
Use exclusive $D_s \rightarrow 3\pi$ decays to select a $X_b \rightarrow D^{*-}D_s^+X$ control sample Determine the different $X_b \rightarrow D^{*-}D_s^+X$ contributions from a fit to m(D*Ds):

• $B^0 \rightarrow D^*D_s, B^0 \rightarrow D^*D_s^*, B^0 \rightarrow D^*D_{s0}^*, B^0 \rightarrow D^*D_{s1}^{\prime}, B_s \rightarrow D^*D_s X, B \rightarrow D^{**}D_s X$

only 20% of D_s originates directly from B, 40% originates from Ds*, 40% from Ds**

• Uncertainties in the fit parameters propagated to final analysis.

Florian Bernlochner

Slide from C. Bozzi

 $X_b \rightarrow D^{*-} D^0 X$ decays can be isolated by selecting exclusive $D^0 \rightarrow K^- 3\pi$ decays (kaon recovered using isolation tools).

A correction to the q² distributions is applied to the Monte Carlo to match data.

In contrast to the D_s^+ case, most 3π final states in D⁺ and D[°] decays originate from D^{+,0} $\rightarrow K^{0,+} 3\pi$

For the D°, the inclusive 4 prongs BR constrains strongly the rate of 3π events

Florian Bernlochner

Unfortunately, this constraint does not exist for the D⁺ mesons, $K3\pi\pi^{\circ}$ is poorly known, the inclusive BR is not measured

We let the D⁺ component float in the fit

Slide from C. Bozzi

-75

Source	$\delta R(D^{*-})/R(D^{*-})[\%]$
Simulated sample size	4.7
Empty bins in templates	1.3
Signal decay model	1.8
$D^{**}\tau\nu$ and $D^{**}_s\tau\nu$ feeddowns	2.7
$D_s^+ \to 3\pi X$ decay model	2.5
$B \to D^{*-}D_s^+X, B \to D^{*-}D^+X, B \to D^{*-}D^0X$ backgrounds	3.9
Combinatorial background	0.7
$B \to D^{*-} 3\pi X$ background	2.8
Efficiency ratio	3.9
Total uncertainty	8.9

Impact of τ -polarisation in

 $au^-
ightarrow \ell^- ar{
u}_\ell
u_ au$ decays :

- secondary lepton emitted preferentially in the direction of the τ
 - **Carries more momentum of the** *τ***-lepton**
- + secondary lepton emitted preferentially against the direction of the τ
 - **Carries less momentum of the** *τ***-lepton**

