The Belle II Computing System

Doris Yangsoo Kim Soongsil University

January 29, 2018 AFAD 2018

Contents

- Introduction
- SuperKEKB and Belle II
- The Belle II Computing System
- Usage of Belle II Grid System
- Summary

Introduction The B Factory

Three Frontiers of Particle Physics

Two B Factories from 1999

Belle / KEKB

BABAR / PEP II

- CP Violation in the B section confirmed.
- Precision measurement of the CKM matrix. X(3872) and exotic particles.
- 2008 Nobel Prize, Kobayashi-Maskawa
- 2017 Hoam Prize (Korea), Sookyung Choi

Two B Factories: Current/Next Generation

Belle II Experiment

- B meson pairs at Y(4S)
- High tagging efficiency of B particles
- Direct detection of γ , π^0 , K_L.
- Detection of neutrinos as missing energy

Upgrade from KEK/Belle to SuperKEKB/Belle II

	KEKB		SuperKEKB	
Luminosity:	2.1x10 ³⁴	\rightarrow	8x10 ³⁵ cm ⁻² s ⁻¹	(x 40)
Integrated Luminosity:	1 ab ⁻¹	\rightarrow	50 ab ⁻¹	(x 50)
Runtime	1998 to 2010		2017 started	
Detector:	Belle	\rightarrow	Belle II	
Raw Data:	1 PB		100 PB (projected 2 sets of raw data)	(x 100)
KEKB				
	Doris Y Kir	m, Soon	gsil University	В

elle II

=

Belle II Collaboration

- 107 institutions
- ~720 colleagues (40 from South Korea)
- America 17%, Asia 25%, Europe 36%, Japan 17%, Russia 5%

SuperKEKB Belle II

SuperKEKB Collider

January 29, 2018

Doris Y Kim, Soongsil University

Beam Commissioning Phases

- BEAST Phase I in 2016.
 - Simple background measuring detector (diodes, diamonds TPCs, crystals)
 - Only single beam circulated for LER/HER.
- BEAST Phase II in 2018.
 - More precise inner background measuring detector +
 - Full Belle II outer detector
 - Two beams (e+, e-) will collide!
- Belle II Phase III at the end of JFY 2018.
 - The most precise silicon inner detector included.
 - Physics mode with the full Belle II detector.

SuperKEKB/Belle II Schedule

The BEAST Phase II Vertex Detector

January 29, 2018

Doris Y Kim, Soongsil University

SuperKEKB/Belle II Luminosity Plan

January 29, 2018

Doris Y Kim, Soongsil University

Installation of Belle II Detectors

May 2016 TOP installed: https://www2.kek.jp/ipns/en/post/2016/05/belle2-top-detector-installation/

October 2016 CDC Installed: https://www2.kek.jp/ipns/en/post/2016/10/belle2-cdc-installation/

Belle II Roll-In April 11, 2017

Photo taken when the detector is just 10 cm from the interaction point. Took 5 hours for the roll-in. For more photos and news of Belle II,

https://www.facebook.com/belle2collab

The Belle II Computing System

The Basic Computing Model

In Reality, More Details

Network Connectivity

Belle II can utilize LHCOPN

Resource Requirement for Near Future

Year	2018	2019	2020	2021	2022
Luminosity (ab ⁻¹ / year)	0.21	1.67	4.67	8.60	12.03
Integrated Luminosity (ab-1)	0.21	1.88	6.64	15.23	27.27

Note: Calendar year. Not JFY

Year	2018	2019	2020	2021	2022
Total tape (PB)	1.6	6.4	17.3	36.1	62.5
Total disk (PB)	3.5	13.2	22.3	23.3	43.6
Total CPU (kHEPSpec)	175	404	431	534	733

Automated Production System Planned

Skim Strategy

uDST files are produced and stored at Belle II Grid

More skim types are in development.

Usage of Belle II Grid System

Usage of Belle II GRID Computing Resources: Number of Jobs by Country

Karim Trabelsi @ KEK

Production on Grid Example: MC9

- No. of MC events: ~ 40 billions (8 billions to be produced)
 - Signal events; ~ 10%
- Size of the final sample: ~ 353 TB
- Size of skimmed files: ~ 78 TB
- Total disk size including intermediate files: ~ 1,350 TB

	Exp. Phase	Sample Type	Size	
	Phase III	Y(3S) generic	300 fb ⁻¹	
		Y(4S) generic	4,000 fb ⁻¹	
		Y(5S) generic	1,000 fb ⁻¹	
		Y(6S) generic	100 fb ⁻¹	
		Signal and low multiplicity		
	Phase II	Y(4S) generic	50 fb ⁻¹	
		Signal and low multiplicity	=	
January 29, 2018 Courtesy: Jake Bennett @ Carnegie Melone University, Karim Trabelsi @ KEK				

Data Transfer Map

Cosmic Particle July 2017

- Relatively low trigger rate
- ~ 10,000 2GB files.
- ~ 17TB for two months.

Summary

- The Belle II Experiment is preparing for the beam collision events in 2018.
- The Belle II Experiment is ideal for new phenomena and precision physics.
 - Huge amount of computing resources are required.
 - Belle II grid system has been tested by periodic tests of MC production. The system passed the tests.
 - User analysis on the grid has started. Ready for physics.

Usage of Belle II GRID Computing Resources: Usage of CPU by Job Type

January 29, 2018

Courtesy: Jake Bennett @ Carnegie Melone University