

NAGOYA UNIVERSITY Delle II The Belle II experiment: status and physics prospects

Kazuhito Suzuki Nagoya University On behalf of the Belle II Collaboration

BSM 2017 @ Jasmine Palace Resort Hurshade, Egypt

/12/2017

Physics motivations and goals

- CP violation (CPV) in the quark sector was elucidated by B-factories.
 An essential part of the SM.
- The CPV is too small to account for the baryon-antibaryon asymmetry in the universe.

-There must be undiscovered source(s) of CPV.

- The SM does not provide answers to various fundamental questions.
 - -Fermion generations and mass hierarchy,
 - -Diagonal hierarchy of the CKM matrix,
 - -Constitution of Higgs sector, etc.

Belle II will search for new physics (NP) in the flavor sector at the intensity frontier.

21/12/2017

Experimental strategy

- Upgrade the accelerator and detector.
 - -Luminosity: $L = 8 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$ (40x Belle).
 - >Intending to accumulate $\int Ldt \sim 50 ab^{-1}$ (50x Belle).
 - >Mitigating the beam BG level to be \sim 20x Belle.
 - -Better detector performance.
 - ➤Tolerable to the high BG level.
- Running on ↑(4S) mostly, utilizing the clean e⁺e⁻ collision environment and good detector hermiticity.
 –Full event reconstruction with kinematic constraint.
- Utilize the reach of indirect NP searches.
 - -Reach of the NP energy scale can be pushed up to $\sim O(100 \text{ TeV})$.
 - –Through W $^\pm$ exchange processes with au .
 - -Through quantum loop processes of Flavor Changing Neutral Current (FCNC).
 - -Over-constraining the Unitary Triangle.

SuperKEKB and Belle II at KEK

SuperKEKB accelerator

Belle II detector

$K_{\!L}$ and muon detector:

Resistive Plate Counter (barrel outer layers) Scintillator + WLSF + MPPC (end-caps, inner 2 barrel layers)

EM Calorimeter:

CsI(TI), waveform sampling

electron (7GeV)

Beryllium beam pipe 2cm diameter

Vertex Detector:

2 layers DEPFET + 4 layers DSSD

Central Drift Chamber

He(50%):C₂H₆(50%), Small cells, long lever arm, fast electronics

Particle Identification: Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (fwd)

positron (4GeV)

6

Readout (TRG, DAQ):

Max. 30kHz L1 trigger ~100% efficient for hadronic events.

1MB(PXD)+100kB(others) per event

→ over 30GB/secto record

Offline computing: Distributed over the world via GRID

21/12/2017

BSM-2017 @ Jasmine Pa Hurghada, Egyp

Construction/commissioning status

Accelerator status (1)

Accelerator status (2)

Accelerator status (4)

Belle II roll-in (complete) March 2017

Detector integration (1)

Detector integration (2)

Detector integration (3)

Belle II Detector Installation

2018

Phase 2

- Barrel Cherenkov particle ID (TOP) installed May 2016
- Drift chamber (CDC) installed October 2016

2019

Phase 3

- End-cap Cherenkov particle ID (ARICH) integration **August 2017**
- Global Cosmic Run DAQ July 2017—
- Vertex detector will be integrated after phase 2

Detector commissioning

Hits in four outer subdetectors

Belle II Detector Installation

- Barrel Cherenkov particle ID (TOP) installed May 2016
- Drift chamber (CDC) installed **October**

2019

Phase 3

- End-cap Cherenkov particle ID (ARICH) integration August 2017
- Global Cosmic Run DAQ July 2017—
- Vertex detector will be integrated after

Vertex detector status

Analysis tools (1)

• Getting ready for experiment.

Analysis tools (2)

• Getting ready for experiment. (cont'd)

Luminosity projection

Phase 2: Peak luminosity reaches 1 x 10³⁴ cm⁻²s⁻¹ (Belle) 20 fb⁻¹ for physics near Y(4S)

Feb 1, 2018: Global cosmic ray runs.
Feb 23, 2018: First HER beam. Belle II off.
March 2, 2018: First LER beam.
April 2018: First collisions "Phase 2"
July 2018: End of commissioning run.

Phase 3: 50 ab⁻¹ by 2025 50x Belle, 100x Babar Early 2019: "Phase 3"

Physics prospect

Leptonic and semileptonic B decays (1)

- $B \rightarrow \tau \nu, \mu \nu$
 - -BF is sensitive to NP.
 - > 4 σ level B→ τ ν evidences in Belle and BaBar.
 - ➤ Currently consistent with SM.
 - The uncertainty will be reduced to 5-6% at 50 ab⁻¹ in Belle II.
 - -Excellent mode to test the Lepton Flavor Universality.

$$\Gamma^{\rm SM}(B^- \to \ell^- \nu_\ell) = \frac{G_{\rm F}^2 m_B m_\ell^2}{8\pi} |V_{ub}|^2 \left(1 - \frac{m_\ell^2}{m_B^2}\right)^2 f_B^2$$

$$\mathcal{B}(B^- \to \ell^- \bar{\nu}_\ell)_{\mathrm{NP}} = \mathcal{B}(B^- \to \ell^- \bar{\nu}_\ell)_{\mathrm{SM}} \times \mathrm{NP}$$

 $B(B^- \rightarrow \tau^- \bar{\nu}_{\tau})$
 $B(B^- \rightarrow \mu^- \bar{\nu}_{\mu})$ Evidence is expected
at ~2 ab⁻¹.I BF_{SM} BF_{Exp} (WA) τ $(7.71\pm0.62) \times 10^{-5}$ $(1.06\pm0.19) \times 10^{-4}$ μ $(3.46\pm0.28) \times 10^{-7}$ $< 1.0 \times 10^{-4}$ e $(0.811\pm0.065) \times 10^{-11}$ $< 0.98 \times 10^{-4}$

21/12/2017

BSM-2017 @ Jasmine Palace Resort, Hurghada, Egypt Leptonic and semileptonic B decays (1)

- $B \rightarrow \tau \nu, \mu \nu$
 - –BF is sensitive to NP.
 - \succ 4 σ level B $\rightarrow \tau \nu$ evidences in Belle and BaBar.
 - \succ Currently consistent with SM.
 - \succ The uncertainty will be reduced to 5-6% at 50 ab^{-1} in Belle II.
 - -Excellent mode to test the Lepton Flavor Universality.
 - -If no NP, can extract $|V_{ub}|$.
 - \succ Independent from b \rightarrow ul ν .

$$\Gamma^{\rm SM}(B^- \to \ell^- \nu_\ell) = \frac{G_{\rm F}^2 m_{\rm B} m_\ell^2}{8\pi} \left(V_{ub} \right)^2 \left(1 - \frac{m_\ell^2}{m_{\rm B}^2} \right)^2 f_{\rm B}^2$$

$$\mathcal{B}(B^- \to \ell^- \bar{\nu}_\ell)_{\mathrm{NP}} = \mathcal{B}(B^- \to \ell^- \bar{\nu}_\ell)_{\mathrm{SM}} \times \mathrm{NP}$$

21/12/2017

BSM-2017 @ Jasmine Palace Resort, Hurghada, Egypt

Leptonic and semileptonic B decays (2)

• b \rightarrow ul ν , cl ν (l = μ , e) 0.0060 0.0055 $-IV_{ub}I$ and $IV_{cb}I$ determinations. 0.0050 \succ Using incl. and excl. final states. 0.0045 $\succ \delta |V_{ub}| \sim 5\%, \ \delta |V_{cb}| \sim 2\%.$ > 90.0040 > Large $X_c | v$ BG in $X_u | v$ mode. 0.0035 \succ QCD predictions for form factors, 0.0030 inclusive processes, quark masses. 0.0025 – Tension: incl. vs excl. meas. 0.0020 0.032 \succ |V_{ub}|: X_u| ν vs π | ν \gg |V_{cb}|: X_c| ν vs D^(*)| ν

Leptonic and semileptonic B decays (2)

Leptonic and semileptonic B decays (3)

- $B \rightarrow D^{(*)} \tau \nu$
 - $R(D^{(*)})$ measurements show deviations from the SM.
 - > Combined result is 4.1 σ away $\widehat{\mathbb{A}}_{0.45}^{\circ}$ 0.5 from the SM.
 - Hint of NP which violates the 0.4 Lepton Flavor Universality? 0.35

 \succ Charged Higgs, leptoquark, \cdots

ū.d

ū.d

DQ.(#) D+.(#)

Leptonic and semileptonic B decays (3)

- $B \rightarrow D^{(*)} \tau \nu$
 - $R(D^{(*)})$ measurements show deviations from the SM.
 - > Combined result is 4.1 σ away from the SM.
 - Hint of NP which violates the Lepton Flavor Universality?
 Charged Higgs, leptoquark, …
 - The uncertainties will be reduced to 2-3% at 50 ab⁻¹ in Belle II.

$$R(D^{(*)}) \equiv \frac{\Gamma(B \to \bar{D}^{(*)}\tau^+\nu_{\tau})}{\Gamma(B \to \bar{D}^{(*)}\ell^+\nu_{\ell})}$$

|= e, µ

EW penguin b \rightarrow s transitions (2)

- B \rightarrow K^(*)II (I = μ , e)
 - The Angular distribution can be expressed in terms of helicity amplitudes that depend on
 - \succ di-lepton invariant mass squared (q²),
 - > Wilson coefficients C_7 , C_9 , C_{10} , \rightarrow Probe to NP contribution
 - $> B \rightarrow K^*$ form factors.

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_i (C_i \mathcal{O}_i + C_i' \mathcal{O}_i')$$

right-handed part left-handed part suppressed in SM

C_i: Wilson coefficients (short distance effect) O_i: Operators (depend on hadronic form factors)

i=7 photon

BSM-2017 @ Jasmine Palace Resort, Hurghada, Egypt

EW penguin b \rightarrow s transitions (2)

• B \rightarrow K^(*)II (I = μ , e)

Sensitive to interference

between Z/y/W diagrams

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

0.0

21/12/2017

2.5

5.0

7.5

10.0

 $a^2 \, [{\rm GeV}^2/{\rm c}^4]$

12.5

 \mathcal{P}_{2}

- Test on the anomaly in the $B \rightarrow K^*II$ angular analysis: P'_5 .
 - Insensitive to form factors.
 - > LHCb meas. shows 3.3 σ to SM.
 - Consistent with the Belle meas.

 $\mathsf{DHMV}(\mathsf{S}[M])$

LHCb 2015

ATLAS 2017 CMS 2017

Belle (muon mode)

Belle (electron mode)

 $A_{0\,\text{, }/\!/\,\text{, }\perp}{}^{\text{L,R}}$: decay amplitudes for different

- K^{*0} transversity states (subscript),
- di-lepton chiralities (superscript).

q ² range [GeV ² /c ⁴]	Belle 0.71/ab	Belle II 5/ab	Belle II 50/ab
1 – 2.5	0.47	0.17	0.054
2.5-4	0.42	0.15	0.049
4 - 6	0.34	0.12	0.040
> 14.2	0.23	0.088	0.027

36-38% 11-12%

Belle II also has access to $-B \rightarrow K^{(*)} \tau^+ \tau^-, B \rightarrow K^{(*)} \nu^- \nu$.

QCD penguin $b \rightarrow s$ transitions (1)

- Indirect CPV (ICPV) in b→sqq
 - ICPV: interference between the non-mixed and mixed decays to a CP eigenstate.
 - > Giving a time-dependent CP asymmetry $(A(\Delta t))$.
 - For the tree-dominant $b \rightarrow c\overline{c}s$ transitions,

$$\succ S = -\eta_{\rm f} \sin 2\phi_1, C = 0,$$

- > $\eta_{\rm f}$: CP eigenvalue of the final state.
- For the penguin-dominant
 b→sqq transitions,
 - > Same as $b \rightarrow c\overline{c}s$ in SM.
- ➢ If NP exists through the loop of FCNC, the S and C terms may change. 21/12/2017
 21/12/2017

$$\mathcal{A}(\Delta t) = \frac{f_{+}(\Delta t) - f_{-}(\Delta t)}{f_{+}(\Delta t) + f_{-}(\Delta t)}$$

$$= S\sin(\Delta m_d \Delta t) - C\cos(\Delta m_d \Delta t)$$

 Δ t: decay time difference between B⁰ and \overline{B}^0

QCD penguin $b \rightarrow s$ transitions (2)

- Indirect CPV (ICPV) in b→sqq (cont'd)
 - Currently b→sqq show
 consistent results with b→ccs.
 - The uncertainties (δ) will be reduced significantly at 50 ab⁻¹
 - > b→ccs: to 20-25% of present δ, systematics limited.
 - > b→sqq: to ~15% of present δ , mostly scaled to the luminosity.
 - ➢ Both are theoretically clean.
 - Will probe NP through the precision meas. on sin2 ϕ_1 .

b→cc	s World Average)			0.69 ± 0.02
φK ⁰	Average			+ + -	0.74 +0.11
η΄ K⁰	Average			H * I	0.63 ± 0.06
$K_{s}K_{s}$	K _s Average				0.72 ± 0.19
$\pi^0 \ K^0$	Average			* I	0.57 ± 0.17
$\rho^{0} K_{S}$	Average			*	0.54 +0.18
$\omega K_{\rm S}$	Average				0.71 ± 0.21
$\rm f_{_0}~K_{_S}$	Average				0.69 +0.10
$f_2 K_S$	Average	÷			0.48 ± 0.53
$\rm f_{\rm X}~\rm K_{\rm S}$	Average		*		0.20 ± 0.53
π [°] π ⁹ Η	K _s Average				-0.72 ± 0.71
φ π ⁰ Κ	s Average		F		0.97 +0.03
$\pi^+ \pi^- k$	K _s N Average	⊢			0.01 ± 0.33
$K^+_IK^-$	K° Average				0.68 +0.09 -0.10
-1.6 -1.	4 -1.2 -1 -0.8 -0.6 -0.4	-0.2 0	0.2 0.4	0.6 0.8	1 1.2 1.4 1.6

 $sin(2\beta^{eff}) \equiv sin(2\phi_1^{eff}) \stackrel{HFLAV}{\underset{\text{Summer 2016}}{\overset{\text{Burgener 2016}}{\overset{Burgener 2016}}{\overset$

QCD penguin $b \rightarrow s$ transitions (3)

- Direct CPV (DCPV) in $B \rightarrow K \pi$
 - DCPV: interference between $A_{CP}(B \to f) = \frac{\Gamma(\bar{B} \to \bar{f}) \Gamma(B \to f)}{\Gamma(\bar{B} \to \bar{f}) + \Gamma(B \to f)}$ amplitudes to a final state. $= -C \text{ for } f = f_{CP}$

> Giving a time-integrated CP asymmetry (A_{CP}).

QCD penguin b \rightarrow s transitions (3)

- Direct CPV (DCPV) in $B \rightarrow K \pi$ $A_{CP}(B \rightarrow f) \equiv \frac{\Gamma(B \rightarrow f) \Gamma(B \rightarrow f)}{\Gamma(\bar{B} \rightarrow \bar{f}) + \Gamma(B \rightarrow f)}$
 - DCPV: interference between amplitudes to a final state.
 - > Giving a time-integrated CP asymmetry (A_{CP}) .
 - Non-negligible contributions from several diagrams.
 - ➢ Because of suppressed charmless b→u, s transitions.
 - A sum rule of A_{CP} was proposed.
 - Applying the isospin symmetry to the leading contributions.

> Violation could be NP in b \rightarrow sqq.

Phys. Lett. B 627, 82 (2005)

= -C for $f = f_{CP}$

BSM-2017 @ Jasmine Palace Resort, Hurghada, Egypt

QCD penguin $b \rightarrow s$ transitions (3)

• Direct CPV (DCPV) in $B \rightarrow K \pi$

- DCPV: interference between to a final state.
 - > Giving a time-integrated CP asymmetry (A_{CP}) .
- Non-negligible contributions from several diagrams.
 - > Because of suppressed charmless -0.4b \rightarrow u, s transitions.
- A sum rule of A_{CP} was proposed.
 - Applying the isospin symmetry to the leading contributions.

> Violation could be NP in b \rightarrow sqq.

– Important to systematically study all K π modes with high precision in Belle II.

BSM-2017

21/12/2017

Non-B physics

- Various decays will be used
 - -to probe new physics beyond SM,
 - -to have significant progress in flavor physics.
 - $-\tau$ decays, charm decays, dark sectors, quarkonium(-like)/exotic states, ...

"The Belle II Physics Book": https://confluence.desy.de/display/BI/B2TiP+ReportStatus

BSM-2017 @ Jasmine Palace Resort, Hurghada, Egypt

Future prospect

Summary

- SuperKEKB and Belle II are in the final integration and commissioning phase.
 - The detector systems, except the vertex detectors, have been in commissioning with cosmic rays.
 - The "Phase 2" commissioning will start in early 2018.
- Belle II will search for new physics beyond the SM in the flavor sector at the intensity frontier.
 - W-exchanging process with τ ,
 - One loop FCNC processes,
 - Over-constraining the Unitarity Triangle.
- The physics prospects at Belle II indicate exciting future.
 - New physics hunting,
- ^{21/12/}Significant progress in flayor physics.