# Prospects of semi-leptonic B decays and CKM parameters from B decays with the Belle II experiment

Minakshi Nayak

Wayne State University and KEK

On behalf of the Belle II Collaboration



**SUSY 2017** 

TIFR INDIA

December 11, 2017

## SuperKEKB (High luminosity frontier machine!)

- → SuperKEKB major upgrade of the KEKB B factory at KEK
- $\rightarrow$  e<sup>+</sup>e<sup>-</sup> (4 GeV + 7 GeV)  $\rightarrow$  BB mainly at  $\sqrt{s_{cm}}$  = 10.58 GeV (peak of Y(4S) resonance)





#### To obtain x40 higher instantaneous luminosity:

- Double beam current
- → Major increase by small beam size "nano-beam" (vertical spot size ~50nm !!)

#### New technologies: nano beam scheme







## Belle → Belle II

- High luminosity 
   higher event rate and radiation damage to detectors from machine background processes
- Upgrade Belle to have better performances in higher radiation environment



Higher backgrounds



- Radiation damage
- Occupancy in inner detectors
- Fake hits and pile-up



stored on disk

## CKM UT triangle and tree level measurements



| UT angle    | Current status                           | Prediction                                           |
|-------------|------------------------------------------|------------------------------------------------------|
| $\phi_{_1}$ | (21.85 +0.68 <sub>-0.67</sub> )°         | (23.7 <sup>+1.1</sup> <sub>-1.0</sub> ) <sup>0</sup> |
| $\phi_2$    | $(88.8 \pm 2.3)^{\circ}$                 | (92.1 <sup>+1.5</sup> <sub>-1.1</sub> )°             |
| $\phi_3$    | (72.1 <sup>+5.4</sup> <sub>-5.8</sub> )° | (65.3 <sup>+1.0</sup> <sub>-2.5</sub> )°             |

4/20

## Current status of V<sub>ub</sub> and V<sub>cb</sub>

$$|Vub|^{incl} = (4.52 \, ^{+0.19} \, _{-0.21})x \, 10^{-3} \quad |Vcb|^{incl} = (42.19 \, \pm \, 0.78)x \, 10^{-3} \\ |Vub|^{excl} = (3.55 \, \pm \, 0.12)x \, 10^{-3} \quad |Vcb|^{excl} = (39.16 \, \pm \, 0.58)x \, 10^{-3} \\ |Vcb|^{excl} = (3.55 \, \pm \, 0.12)x \, 10^{-3} \quad |Vcb|^{excl} = (39.16 \, \pm \, 0.58)x \, 10^{-3} \\ |Vcb|^{excl} = (3.55 \, \pm \, 0.12)x \, 10^{-3} \quad |Vcb|^{excl} = (39.16 \, \pm \, 0.58)x \, 10^{-3} \\ |Vcb|^{excl} = (3.55 \, \pm \, 0.12)x \, 10^{-3} \quad |Vcb|^{excl} = (39.16 \, \pm \, 0.58)x \, 10^{-3} \\ |Vcb|^{excl} = (3.55 \, \pm \, 0.12)x \, 10^{-3} \quad |Vcb|^{excl} = (39.16 \, \pm \, 0.58)x \, 10^{-3} \\ |Vcb|^{excl} = (39.16 \, \pm \, 0.58)x \, 10^{-3} \, |Vcb|^{excl} = (39.16 \, \pm \, 0.58)x \, 10^{-3} \, |Vcb|^{excl} = (39.16 \, \pm \, 0.58)x \, 10^{-3} \, |Vcb|^{excl} = (39.16 \, \pm \, 0.58)x \, 10^{-3} \, |Vcb|^{excl} = (39.16 \, \pm \, 0.58)x \, 10^{-3} \, |Vcb|^{excl} = (39.16 \, \pm \, 0.58)x \, 10^{-3} \, |Vcb|^{excl} = (39.16 \, \pm \, 0.58)x \, 10^{-3} \, |Vcb|^{excl} = (39.16 \, \pm \, 0.58)x \, 10^{-3} \, |Vcb|^{excl} = (39.16 \, \pm \, 0.58)x \, 10^{-3} \, |Vcb|^{excl} = (39.16 \, \pm \, 0.58)x \, 10^{-3} \, |Vcb|^{excl} = (39.16 \, \pm \, 0.58)x \, 10^{-3} \, |Vcb|^{excl} = (39.16 \, \pm \, 0.58)x \, 10^{-3} \, |Vcb|^{excl} = (39.16 \, \pm \, 0.58)x \, 10^{-3} \, |Vcb|^{excl} = (39.16 \, \pm \, 0.58)x \, 10^{-3} \, |Vcb|^{excl} = (39.16 \, \pm \, 0.58)x \, 10^{-3} \, |Vcb|^{excl} = (39.16 \, \pm \, 0.58)x \, 10^{-3} \, |Vcb|^{excl} = (39.16 \, \pm \, 0.58)x \, 10^{-3} \, |Vcb|^{excl} = (39.16 \, \pm \, 0.58)x \, 10^{-3} \, |Vcb|^{excl} = (39.16 \, \pm \, 0.58)x \, 10^{-3} \, |Vcb|^{excl} = (39.16 \, \pm \, 0.58)x \, 10^{-3} \, |Vcb|^{excl} = (39.16 \, \pm \, 0.58)x \, 10^{-3} \, |Vcb|^{excl} = (39.16 \, \pm \, 0.58)x \, 10^{-3} \, |Vcb|^{excl} = (39.16 \, \pm \, 0.58)x \, 10^{-3} \, |Vcb|^{excl} = (39.16 \, \pm \, 0.58)x \, 10^{-3} \, |Vcb|^{excl} = (39.16 \, \pm \, 0.58)x \, 10^{-3} \, |Vcb|^{excl} = (39.16 \, \pm \, 0.58)x \, 10^{-3} \, |Vcb|^{excl} = (39.16 \, \pm \, 0.58)x \, 10^{-3} \, |Vcb|^{excl} = (39.16 \, \pm \, 0.58)x \, 10^{-3} \, |Vcb|^{excl} = (39.16 \, \pm \, 0.58)x \, 10^{-3} \, |Vcb|^{excl} = (39.16 \, \pm \, 0.58)x \, 10^{-3} \, |Vcb|^{excl} = (39.16 \, \pm \, 0.58)x \, 10^{-3} \, |Vcb|^{excl} = (39$$







- Longstanding discrepancy between inclusive and exclusive measurements
- Measurement of  $V_{ub}/V_{cb}$  is important as it constrains the length of the unitarity triangle opposite the angle  $\phi_1$

# How to extract Exclusive V<sub>ub</sub>?

$$\frac{d\mathcal{B}(B \to \pi l \nu)}{dq^2} = \frac{G_F^2 \tau_B}{24\pi^3} p_{\pi}^3 |V_{ub}|^2 |f_+^{B\pi}(q^2)|^2$$

$$\frac{d\mathcal{B}(B \to V l \nu)}{dq^2} = \frac{G_F^2 p_V q^2 \tau_B}{96\pi^3 m_B^2} |V_{ub}|^2 [|H_0(q^2)|^2 + |H_+(q^2)|^2 + |H_-(q^2)|^2]$$

- Measure differential branching fractions in bins of q<sup>2</sup> (Experimental measurement)
- Form factor through QCD based calculation (theoretical input)
- Extract V<sub>ub</sub>
- Inclusive and exclusive vary depending upon the composition and theoretical input
- Measure branching fractions through tagged (hadronic, semileptonic) and untagged measurements

## Methods to do measurement

#### "Hadronic Tagged" measurement



#### "Untagged" measurement



#### Advantage

- Exact momentum of companion B gives good q<sup>2</sup> resolution.
- $\varepsilon = 0.55\%$  (0.3%@Belle)
- Improvement w.r.t. Belle is due to the better tagging algorithms

### Advantage

- Indirect determination of companion B momentum spoils q<sup>2</sup> resolution.
- $\varepsilon = 20\%$  (11%@Belle)
- Improvement w.r.t. Belle is due to the better ROE handling

# Entries/(0.15 GeV<sup>2</sup>/ $c^4$ ) 6 8 8 6 **Belle Exclusive:** B → πlv

Phys. Rev. D 88, 032005 (2013)

- Data sample =  $711 \text{ fb}^{-1}$
- Clean signal in missing mass ~ 0
- Signal yield:  $B^+ = 232 \pm 23$ ,  $B^0 = 463 \pm 28$
- Exclusive  $|V_{ub}| = (3.52 \pm 0.29) \times 10^{-3}$

Belle II Projection to B → πIv

Expected precision at 50 ab<sup>-1</sup> from B→πIν (Untagged)  $δ_{IVubI} = 1.3\%$ 



Forecasts of V<sub>ub</sub> sensitivity to various luminosity 8/20 values for tagged and untagged modes.

 $B \rightarrow \pi^0 l \nu$ 

# V<sub>ub</sub> extrapolation to Belle II

Belle II will provide more precise measurements (B2TIP)



|                                                    | Statistical              | Systematic | Total Exp | Theory    | Total     |
|----------------------------------------------------|--------------------------|------------|-----------|-----------|-----------|
|                                                    | (reducible, irreducible) |            |           |           |           |
| $ V_{ub} $ exclusive (had. tagged                  | l)                       |            |           |           |           |
| $711 \; {\rm fb^{-1}}$                             | 3.0                      | (2.3, 1.0) | 3.8       | 8.7 (2.0) | 9.5 (4.3) |
| $5 \text{ ab}^{-1}$                                | 1.1                      | (0.9, 1.0) | 1.7       | 4.0(2.0)  | 4.4 (2.6) |
| $50 \text{ ab}^{-1}$                               | 0.4                      | (0.3, 1.0) | 1.1       | 2.0       | 2.3       |
| $ V_{ub} $ exclusive (untagged)                    |                          |            |           |           |           |
| $605 \ {\rm fb^{-1}}$                              | 1.4                      | (2.1, 0.8) | 2.9       | 8.7 (2.0) | 9.1 (4.0) |
| $5 \text{ ab}^{-1}$                                | 0.5                      | (0.8, 0.8) | 1.2       | 4.0 (2.0) | 4.2 (2.4) |
| $50 \ {\rm ab^{-1}}$                               | 0.2                      | (0.3, 0.8) | 0.9       | 2.0       | 2.2       |
| $ V_{ub} $ inclusive                               |                          |            |           |           |           |
| $605 \text{ fb}^{-1} \text{ (old } B \text{ tag)}$ | 4.5                      | (3.7, 1.6) | 6.0       | 2.5 - 4.5 | 6.5 - 7.5 |
| $5 \text{ ab}^{-1}$                                | 1.1                      | (1.3, 1.6) | 2.3       | 2.5 - 4.5 | 3.4 - 5.1 |
| $50 \text{ ab}^{-1}$                               | 0.4                      | (0.4, 1.6) | 1.7       | 2.5 - 4.5 | 3.0 - 4.8 |

Expected errors in  $|V_{ub}|$  measurements with the Belle full data sample, 5 ab<sup>-1</sup> and 50 ab<sup>-1</sup> Belle II data.

- Expected: theory error down to 2% for exclusive and 2–4 % for inclusive modes
- Most promising are exclusive analysis with hadronic tags: clean and detailed exploration of exclusive b → u
- Untagged analyses is competitive too

# New V<sub>cb</sub> exclusive results from

## Belle

arXiv:1702.01521

 $V_{ch}$  determined by inclusive and exclusive measurements show  $2-3\sigma$  discrepancy

- Signal identified using Hadronic tag
- Signal extracted by missing mass square:

$$M_{\text{miss}}^2 = (p_{\text{beam}} - p_{B_{\text{tag}}} - p_D - p_l)^2 \ (l = e, \mu)$$





$$|V_{cb}| = (37.4 \pm 1.3) \times 10^{-3}$$

# V<sub>cb</sub> extrapolation to Belle II

Belle II will provide more precise measurements (B2TIP)



|                                        | Statistical              | Systematic | Total Ex | p Theory | Total |
|----------------------------------------|--------------------------|------------|----------|----------|-------|
|                                        | (reducible, irreducible) |            |          |          |       |
| $\overline{ V_{cb} }$ exclusive : F(1) |                          |            |          |          |       |
| $711 \; {\rm fb^{-1}}$                 | 0.6                      | (2.8, 1.1) | 3.1      | 1.8      | 3.6   |
| $5 {\rm \ ab^{-1}}$                    | 0.2                      | (1.1, 1.1) | 1.5      | 1.0      | 1.8   |
| $50 \text{ ab}^{-1}$                   | 0.1                      | (0.3, 1.1) | 1.2      | 0.8*     | 1.4   |
| $ V_{cb} $ exclusive : G(1)            |                          |            |          |          |       |
| $423 \text{ fb}^{-1}$                  | 4.5                      | (3.1, 1.2) | 5.6      | 2.2      | 3.6   |
| $5~\mathrm{ab^{-1}}$                   | 1.3                      | (0.9, 1.2) | 2.0      | 1.5*     | 2.7   |
| $50 \text{ ab}^{-1}$                   | 0.6                      | (0.4, 1.2) | 1.4      | 1.0*     | 1.7   |

Expected errors in  $|V_{cb}|$  exclusive measurements with the Belle full data sample, 5 ab<sup>-1</sup> and 50 ab<sup>-1</sup> Belle II data.

# $\phi_3$

 $\Phi_3$  from interference between  $B^- \to D^0 K^-$  and  $B^- \to \overline{D}^0 K^-$  using tree level B decay



Combine results from various B and D decays. Extraction of  $\Phi_{_3}$  by combining

Using different B decays: DK , D\*K, DK\* . . . information from all measurements Different hadronic factors ( $r_B$ ,  $\delta_B$ ) for each B decay mode

Three main methods for various D decays:

– CP eigenstates : GLW method

PLB 253, 483 (1991), PLB 265, 172 (1991)

- Doubly Cabbibo suppressed decays : ADS method
- Three- body decays : GGSZ ( Dalitz) method

PRD 63, 036005 (2001)

12 / 20

PRD 68, 054018 (2003)

## **Current Direct / Indirect sensitivity:**

Measure  $\phi_3$  direct(tree) and indirect way (loop) and compare to see effect of new physics

## Current direct sensitivity: $\phi_3 = (72.1^{+5.4}_{-5.8})^{\circ}$



## Current indirect sensitivity: $\phi_3 = (65.3^{+1.0}_{-2.5})^{\circ}$



## Why best $\phi_3$ sensitivity is from Belle II?

Along with leading modes  $K^+\pi^-$ ,  $K^+K^-$ ,  $\pi^+\pi^-$ ,  $K_s^-\pi^0$ ,  $Ks\pi^+\pi^-$ ,  $K_s^-K^+K^-$ , Any final state can be reconstructed including those with  $\gamma$ .

With 50 ab<sup>-1</sup> data: Forseen φ<sub>3</sub> precision of 1.5°



# $B \rightarrow D^*TV$ a powerful probe for new physics

$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)} \tau \nu)}{\mathcal{B}(B \to D^{(*)} l \nu)} \quad (l = e, \mu)$$

$$P_{\tau}(D^{(*)}) = \frac{\Gamma^{+} - \Gamma^{-}}{\Gamma^{+} + \Gamma^{-}}$$



## **SM** predictions

$$R_{\rm D} = 0.299 \pm 0.003$$

$$R_{D*} = 0.257 \pm 0.003$$

$$P_{T}(D) = 0.325 \pm 0.009$$

$$P_{.}(D^*) = -0.497 \pm 0.013$$



- Sensitive to new physics models through charged Higgs and leptoquarks at tree level diagram
- Ratio of Branching fractions cancel several uncertainties
- Measured by Belle, BaBar, LHCb show a large discrepancy from SM

## **Belle Results summary**





| Tag method   | $\tau^{-}$ decays           | Observables     | Fit Variables                | Result                                                                                             |
|--------------|-----------------------------|-----------------|------------------------------|----------------------------------------------------------------------------------------------------|
| Hadronic     | $l^- \nu_{	au} \bar{\nu}_l$ | $R_D$           | $M_{miss}^2, O_{NB}$         | $0.375\pm0.064(\text{stat})\pm0.026(\text{syst})$ Phys. Rev. D 92(7), 072014 (2015)                |
| Hadronic     | $l^- u_{	au}ar{ u}_l$       | $R_{D^*}$       | $M_{miss}^2, O_{NB}$         | $0.293\pm0.038(\text{stat})\pm0.015(\text{syst})$ Phys. Rev. D 92(7), 072014 (2015)                |
| Semileptonic | $l^- u_{	au}ar{ u}_l$       | $R_{D^*}$       | $E_{ECL}, O'_{NB}$           | $0.302\pm0.030(\text{stat})\pm0.011(\text{syst})$ Phys. Rev. D 94(7), 072007 (2016)                |
| Hadronic     | $h^-\nu_{	au}$              | $R_{D^*}$       | $E_{ECL}, \cos \theta_{hel}$ | $0.270\pm0.035(\text{stat})^{+0.028}_{-0.025}(\text{syst})$<br>Phys. Rev. Lett. 118, 211801 (2017) |
| Hadronic     | $h^- u_	au$                 | $P_{\tau}(D^*)$ | $E_{ECL}, \cos \theta_{hel}$ | -0.38 $\pm$ 0.51(stat) $^{+0.21}_{-0.16}$ (syst)<br>Phys. Rev. Lett. 118, 211801 (2017)            |

## Advantage of different tag methods

Hadronic: low background, Efficiency = O(0.1%)

Semileptonic: Efficiency O(0.2%)

Inclusive: High background, Efficiency: O(2%)

15 / 20

## Status of B → D\*τν

Current measurement of R(D\*) and R(D) from world average



 $4.1\sigma$  deviation from SM

#### **Constraint on NP models**



prediction of  $R(D^{(*)})$  from 2HDM model as function of  $tan\beta/m_{Higgs}$ 

# **Extrapolation to Belle II**

- Confirm the excess with better sensitivity  $\overset{\hat{b}}{\sim}$
- Better understanding of backgrounds specifically B → D\*\* I ν (most delicate BG)
- Belle II will provide tau and D\* polarization with better sensitivity





#### **Belle II sensitivity**

|                     | 5 ab <sup>-1</sup> | 50 ab <sup>-1</sup> |
|---------------------|--------------------|---------------------|
| $R_{_{D}}$          | $(6.0 \pm 3.9)\%$  | (2.0 ± 2.5)%        |
| $R_{_{D^{\star}}}$  | $(3.0 \pm 2.5)\%$  | $(1.0 \pm 2.0)\%$   |
| P <sub>τ</sub> (D*) | $(0.18 \pm 0.08)$  | $(0.06 \pm 0.04)$   |

First uncertainty is statistical  $_{
m 17/20}$  and second is systematic

# Summary

- Belle II aims to provide 50 ab<sup>-1</sup> at Y(4S) within its runtime (Belle: one ab<sup>-1</sup>)
- Measurements of the Belle II will test CKM unitarity with 1% precision.
- Most relevant contribution to using CKM physics to probe new physics is significant improvent of  $V_{ub}$  and  $\Phi_{_3}$  at Belle II
- $\sim$ 4 $\sigma$  discrepancy from the SM remains for the world average of R(D(\*))
- The precision of all these measurements will be improved by the Belle II experiment

(May point to new physics?)





## More Belle and Belle II Flavor talks

## FP parallel session

- N. Dash: Recent results on FCNC B meson decays at Belle
- S. Sandilya: Radiative and Electroweak Penguin B Decays at Belle II
- Giacomo Caria: Recent results and prospects for  $B \to D^*\tau \nu$ ,  $B \to \mu \nu$  (already covered)

## Plenary talk

 Phillip Urquijo: B physics recent results and future prospects at Belle II

