Baryon spectroscopy at Belle and future prospects for Belle II and J-PARC

Kiyoshi Tanida

(Advanced Science Research Center, Japan Atomic Energy Agency)
2nd Workshop on Future Directions in Spectroscopy Analysis (FDSA2017) 10 Nov. 2017

Contents

- I. Baryon spectroscopy at Belle
 - 1. Spectroscopy of $\Xi_{\rm c}$ and $\Omega_{\rm c}$
 - 2. Double-Cabibbo suppressed decay of Λ_c : $\Lambda_c^+ \rightarrow pK^+\pi^-$
 - 3. Production rates of charmed baryons and hyperons
 - 4. $\Lambda_c^+ \rightarrow p \phi \pi^0$ and search for pentaquarks
- II. (My personal) Future prospects for Belle II and J-PARC
 - 1. Charmed baryon spectroscopy
 - 2. Search for new hyperon resonance around the $\Lambda\eta$ threshold
 - 3. Hyperon spin structure study using Λ_c^+ decay
- III. Summary

Part I. Baryon spectroscopy at Belle

Almost 4π , good momentum resolution ($\Delta p/p \sim 0.1\%$), EM calorimeter, PID & Si Vertex detector

Baryon production in B factory

Baryons produced via fragmentation

- Charmed baryons rather direct
- Hyperons later stage of fragmentation

Huge statistics

B is efficiently produced via Y(4s)

Once bottom is produced, it favorably decays into charm.

1.1 Spectroscopy of $\Xi_{\rm c}$

7

Measurements

- Various Ξ_c resonances are observed in $\Xi_c \pi$, $\Xi_c \pi \pi$, $\Lambda_c K \pi$, and ΛD .
- Masses & widths are precisely determined for 7 states: $\Xi'_{c}(2580), \Xi_{c}(2645), \Xi_{c}(2790), \Xi_{c}(2815), \Xi_{c}(2980), \Xi_{c}(3055), \text{ and } \Xi_{c}(3080)$
 - Fundamental information to identify the nature of these states.
 - Significant mass difference in isodoublets observed.

• Mass: $\Xi'_{c}^{+}: 2578.4 \pm 0.1 \pm 0.4^{+0.3}_{-0.4}$ [MeV] $\Xi'_{c}^{0}: 2579.2 \pm 0.1 \pm 0.4^{+0.3}_{-0.4}$

 $\Delta M = 0.8 MeV$

Ξ_c(2645)

 $\Sigma_{c}^{*}(2520)$ analog, J^P=3/2⁺

 $\Delta M = 0.8 \, MeV$

- Mass: $\Xi_{c}(2645)^{+}: 2645.58 \pm 0.06 \pm 0.07^{+0.28}_{-0.40}$ $\Xi_{c}(2645)^{0}: 2646.43 \pm 0.07 \pm 0.07^{+0.28}_{-0.40}$
- Width: $\Xi_c(2645)^+: 2.06 \pm 0.13 \pm 0.13$ $\Xi_c(2645)^0: 2.35 \pm 0.18 \pm 0.13$

Ξ_c(2790)

- $\Delta M = 3.3 MeV$
- Mass: $\Xi_{c}(2790)^{+}: 2791.6 \pm 0.2 \pm 0.1 \pm 0.4^{+0.3}_{-0.4}$ $\Xi_{c}(2790)^{0}: 2794.9 \pm 0.3 \pm 0.1 \pm 0.4^{+0.3}_{-0.4}$
- Width: $\Xi_c(2790)^+$: 8.9 \pm 0.6 \pm 0.8 $\Xi_c(2790)^0$: 10.0 \pm 0.7 \pm 0.8

 $\Delta M = 3.5 \ MeV$

- Mass: $\Xi_{c}(2815)^{+}: 2816.73 \pm 0.08 \pm 0.06^{+0.28}_{-0.40}$ $\Xi_{c}(2815)^{0}: 2820.20 \pm 0.08 \pm 0.07^{+0.28}_{-0.40}$
- Width: $\Xi_c(2815)^+: 2.43 \pm 0.20 \pm 0.17$ $\Xi_c(2815)^0: 2.54 \pm 0.18 \pm 0.17$
 - First observation of finite width

 $\Lambda_{\rm c}(2765)$ analog??

- Mass: $\Xi_c(2980)^+$: 2966.0 \pm 0.8 \pm 0.2^{+0.3}_{-0.4} $\Delta M = 4.8 MeV$ $\Xi_c(2980)^0$: 2670.8 \pm 0.7 \pm 0.2^{+0.3}_{-0.4}
- Width: $\Xi_{c}(2980)^{+}: 28.1 \pm 2.4^{+1.0}_{-5.0}$ $\Xi_{c}(2980)^{0}: 30.3 \pm 2.3^{+1.0}_{-1.8}$

Measurements

- Various Ξ_c resonances are observed in $\Xi_c \pi$, $\Xi_c \pi \pi$, $\Lambda_c K \pi$, and ΛD .
- Masses & widths are precisely determined for 7 states: $\Xi'_{c}(2580), \Xi_{c}(2645), \Xi_{c}(2790), \Xi_{c}(2815), \Xi_{c}(2980), \Xi_{c}(3055), \text{ and } \Xi_{c}(3080)$
- New observations in ΛD mode:
 - $\Xi_c(3055)^0$ is newly discovered ΛD modes are firstly observed for $\Xi_c(3055)^+$ and $\Xi_c(3080)^+$

Mass difference in isodoublets

	Analog state/J ^P	M(Ξ _c ⁰)-M(Ξ _c ⁺) (MeV)
$\Xi_{c}(g.s.)$	$\Lambda_{\rm c}$ 1/2 ⁺	2.93 ± 0.24
Ξ′ _c (2580)	Σ _c (2455), 1/2 ⁺	0.8 ± 0.5
Ξ [*] _c (2645)	Σ _c (2520), 3/2 ⁺	0.9 ± 0.5
Ξ _c (2790)	Λ _c (2593), 1/2 ⁻	3.3 ± 0.7
Ξ _c (2815)	Λ _c (2625), 3/2 ⁻	3.5 ± 0.5
Ξ _c (2980)	?	4.8 ± 0.6
Ξ _c (3055)	?	3.2 ± 0.9

Small mass difference (≤ 1 MeV) for Σ_c analog states Larger mass difference (~ 3 MeV) for the others

Interpretation in diquark picture

• When us/ds is a "good diquark" \rightarrow Coulomb effect is large

"Bad diquark" → Small mass splitting

- Case for $\Xi'_{c}(2580) \& \Xi^{*}_{c}(2645)$

- Supportive for diquark picture
- Should be different for λ/ρ excitation, too.
 - Gives hint for structure
- $\Xi_c(2980), \Xi_c(3050) \Lambda_c$ analog with good diquark & λ mode excitation?

Measurements

- Various Ξ_c resonances are observed in $\Xi_c \pi$, $\Xi_c \pi \pi$, $\Lambda_c K \pi$, and ΛD .
- Masses & widths are precisely determined for 7 states: $\Xi'_{c}(2580), \Xi_{c}(2645), \Xi_{c}(2790), \Xi_{c}(2815), \Xi_{c}(2980), \Xi_{c}(3055), \text{ and } \Xi_{c}(3080)$
- New observations in ΛD mode:
 - $\Xi_{c}(3055)^{0}$ is newly discovered AD modes are firstly observed for $\Xi_{c}(3055)^{+}$ and $\Xi_{c}(3080)^{+}$
 - Branching ratios of $\Xi_{\rm c}(3055)^{+}$ and $\Xi_{\rm c}(3080)^{+}$ to $\Lambda D^{+}/\Sigma_{\rm c} K$ mode are measured

 \rightarrow Sensitive to structure of these states under heavy quark symmetry.

Branching ratios

- $B(\Xi_c(3055)^+ \to \Lambda D^+)/B(\Sigma_c^{++}K^-) = 5.09 \pm 1.01 \pm 0.76$ $B(\Xi_c(3080)^+ \to \Lambda D^+)/B(\Sigma_c^{++}K^-) = 1.29 \pm 0.30 \pm 0.15$ $B(\Xi_c(3080)^+ \to \Sigma_c^{*++}K^-)/B(\Sigma_c^{++}K^-) = 1.27 \pm 0.27 \pm 0.01$
- BR Reflects the structure of each resonance.
 - Naively, Large ΛD branching ratio suggests the excitation is in between c and us (λ mode), not in between s and u (ρ mode).
 - BR for heavy-quark spin doublet partner (e.g., from/to Σ_c^* and Σ_c) are related by heavy quark symmetry.
 - A challenge to theorists, together with mass & width

Excited $\Omega_{\rm c}$ search

- 5 Narrow Ω_c^* resonances (+ possibly one wide one) are found by LHCb in the decay mode of $\Omega_c^* \rightarrow \Xi_c K^-$
- Of course, Belle can look at the same final states

Belle preliminary result

- Masses and widths are FIXED to the LHCb results
- Significant signals for the Ω_c (3066) & Ω_c (3090). Less significant for Ω_c (3000) and Ω_c (3050).
- No signal for the $\Omega_c(3119)$

1.2 Double-Cabibbo suppressed decay of Λ_c : $\Lambda_c^+ \rightarrow pK^+\pi^-$

Doubly Cabibbo-suppressed decay

- Weak decay amplitude of a charm quark
 - $c \rightarrow s: cos θ_c ~ 1$ d: sin θ_c ~ 0.23 ← Cabibbo suppression
 - At the same time, emitted W decays into a qqbar pair $u\overline{d}$: $\cos\theta_{c}$ $u\overline{s}$: $\sin\theta_{c}$
- So, the decay $c \rightarrow d(u\bar{s})$ is twice suppressed $Q = \frac{Q}{2}$
 - → Doubly Cabibbo-suppressed decay
 - Naively, decay branch is O(tan⁴ θ_c) ~ 0.28% smaller compared to counterpart ($c \rightarrow s(\bar{d}u)$)

 q_1

Analysis strategy

• Get the branching ratio wrt the CF counterpart, $\Lambda_{\rm c}^+ \rightarrow p K^- \pi^+$

$$\frac{BR(\Lambda_{\rm c}^+ \to pK^+\pi^-)}{BR(\Lambda_{\rm c}^+ \to pK^-\pi^+)} \cong \frac{N(\Lambda_{\rm c}^+ \to pK^+\pi^-) + CC}{N(\Lambda_{\rm c}^+ \to pK^-\pi^+) + CC}$$

- Strong cancelation in acceptance & efficiencies
 → Small systematic error
 - Each single particle (p, pbar, K⁺, K⁻, π^+ , π^-) appears once both in denominator and numerator
 - \rightarrow Single particle efficiencies cancel exactly
- Phase space is also the same

Result

 $\frac{BR(\Lambda_{\rm c}^+ \to pK^+\pi^-)}{BR(\Lambda_{\rm c}^+ \to pK^-\pi^+)} = (2.35 \pm 0.27 \pm 0.21) \times 10^{-3}$

- Statistical significance: 9.4σ
- Together with $BR(\Lambda_c^+ \to pK^-\pi^+) = (6.84 \pm 0.24^{+0.21}_{-0.27})\%$,

$$BR(\Lambda_{c}^{+} \rightarrow pK^{+}\pi^{-}) = (1.61 \pm 0.23^{+0.07}_{-0.08}) \times 10^{-4}$$

The first observation of DCS decay in Baryon

1.3 Production rates of charm baryons and hyperons

Baryon production rates

- Inclusive $e^+e^- \rightarrow h(+X)$ cross section $\sigma \propto (2J + 1)\exp(-\alpha m)$
- Deviation for Λ and Λ(1520) in previous measurements

 J=0, light (ud) di-quark in Λ?
- Need correction for feed-down
- How about charmed baryons?

○ LEP √s=92 GeV
○ ARGUS √s=10.5 GeV

• New measurement in Belle

Result1 -- hyperons

[arXiv:1706.06791]

- Slope parameter $\alpha = -7.3 \pm 0.3 \text{ GeV}^{-1}$
- Enhancement of Λ and Λ(1520) is not observed
- Suppression for "bad diquark"?
- Suppression of multi-strangeness baryons
 - $-g \rightarrow ss suppress$

Result2 – charm baryons [arXiv:1706.06791]

• Λ_c line is significantly σ / (2J+1) (pb) 0 0 above the Σ_c line Λ_{c}^{+} By factor ~4 Slope $\alpha = -6.3 \pm 0.5 \text{ GeV}^{-1}$ ∆_c(2595)⁺ 10 for Λ_{c} ∆**c(2625)**⁺ $\alpha = -5.8 \pm 1.0 \text{ GeV}^{-1}$ Σ_{c}^{0} for Σ_{c} Σ_c(2520)⁰ • "Good diquarks" are preferably produced Σ_c(2800) $10^{-1}_{-2.2}$ 2.3 2.4 2.5 2.6 2.7 2.8 mass (GeV)

1.4 $\Lambda_c^+ \rightarrow p \phi \pi^0$ and search for pentaquark

Search for a pentaquark in $\Lambda_c^{+} \rightarrow p \phi \pi^{\vec{0}}$

- LHCb discovered hidden-charm pentaquark (P_c⁺) in $J/\psi p$ of $\Lambda_b^0 \rightarrow J/\psi p K^-$
- Strange analog state (P_s⁺) may appear in φp of $\Lambda_c^+ \rightarrow \varphi p \pi^0$ [V. Kopeliovich, PRD93 074012], [R. F. Lebed, PRD92 114030]

Analysis of $\Lambda_c^{+} \rightarrow p\phi\pi^0$

- Exclude events of M($p\pi^0$) within 10 MeV of mass of Σ^+
- Two dimensional fit for $pK^+K^-\pi^0$ and K^+K^- invariant masses

Search for P_s

Select Λ_c⁺→ pK⁺K⁻π⁰ candidates with M(K⁺K⁻) being within 20 MeV of φ mass

Part II. (My personal points of view) Future prospects for Belle II and J-PARC

SuperKEKB and Belle II

Upgrade for SuperKEKB and Belle II to achieve $40x \text{ peak } \mathcal{L}$ under 20x bkgd

- Reduction in the beam size by 1/20 at the IP.
- Doubling the beam currents.

- ► First turns achieved Feb. 2016
- ► Beam-background studies ongoing

Goal: x50 more statistics than Belle
K₁ and muon detector: The Belle II detector Resistive Plate Counter (barrel outer layers) Scintillator + WLSF + MPPC (end-caps, inner 2 barrel layers) **EM Calorimeter:** CsI(TI), waveform sampling Particle Identification: Time-of-Propagation counter (barrel) Prox. Focusing Aerogel RICH (fwd) electron (7 GeV) Beryllium beam pipe: positron (4 GeV) 2 cm diameter Vertex detector: 2 layers DEPFET + 4 layers DSSD Readout (TRG, DAQ): Max. 30kHz L1 trigger Central Drift Chamber: ~100% efficient for hadronic events. He(50%):C₂H₆(50%), Small cells, 1MB (PXD) + 100kB (others) per event long lever arm, fast electronics - over 30GB/sec to record Offline computing: Distributed over the world via the GRID First new particle collider since the LHC

(intensity rather than energy frontier; e⁺e⁻ rather than pp)

arXiv:1011.0352 [physics.ins-det] 20

Belle II today

Belle II roll-in (April 11)

Global cosmic run (August)

Luminosity projection

Nuclear & Hadron Physics in J-PARC

Experiments at a glance (not all)

2.1 Charmed baryon spectroscopy

Belle II possibilities

- Many things, but some of them can be done in Belle, too
 - We have not used the full potential of Belle data
- Examples include:
 - Search for more ${\rm Y}_{\rm c}$ resonances in unsearched modes; e.g., $\Lambda_{\rm c}\eta$
 - J^P measurements for Λ_c*, Ξ_c*, Ω_c* ...; Partial wave analysis.
 → We can determine J^P of most of presently known states
 → Comprehensive list of charmed baryons
 - Search for $\Xi*$ and $\Omega*$ resonances in the decay of $\Lambda_{\rm c}$ and $\Xi_{\rm c}.$
 - Weak decay branches and decay asymmetry parameters
 - Exotic search: pentaquarks, dibaryons, ... e.g., ND, $N\overline{D}$ (or Θ_c), H, H_c, $\Lambda_c N$, ...

.

 $I(J^{P})$ not known yet \rightarrow We will determine soon, together with mass, width, and branching ratios

What is the nature?

- Roper resonance analog?
 - Predict J^P=1/2⁺
- Bound state of DN?
 - Binding energy: 45 MeV
 - S-wave \rightarrow J^P=1/2⁻, analogous to $\Lambda(1405)$ $\Sigma_{c}(2800)$ may be regarded as I=1 counterpart
- Quark model interpretation may be possible (J^P=1/2⁻,3/2⁺,...)
- Other possibilities
- In Belle II, we can determine whether there are analog states in $\Xi_{\rm c}$ and $\Omega_{\rm c}$

J-PARC E50: Missing mass spectroscopy by $p(\pi^-, D^{*-})$

- Analogous to $p(\pi, K)$ reaction
- Direct reaction
 - possibility to produce resonances not made in fragmentation
 - Production cross section gives valuable information
 - No bias on decays
 - \rightarrow Absolute branching ratio can be measured
- Cross Section: $\sigma \sim 1 \text{ nb}$
 - Intense Beam at J-PARC is indispensable.
 - $> 10^7$ Hz at 15 GeV/c pions

High momentum beam line

- High-intensity secondary beam (unseparated)
 - 2 msr % , 1.0 x 10⁷ Hz @ 15GeV/c π
- High-resolution beam: $\Delta p/p^{0.1\%}$
 - Momentum dispersion and eliminate 2nd order aberrations

- Large Acceptance, Multi-Particle
 - K, π from D^0 decays
 - Soft π from D^{*-} decays
 - (Decay products from Y_c^*)
- High Resolution
- High Rate
 - SFT/SSD: >10M/spill at K1.8

Charmed Baryon Spectrometer

Large acceptance ~ 60% (for D^*), $\Delta p/p \sim 0.2\%$ at ~5 GeV/c

Expected spectrum: $\sigma_{GS} = 1$ nb

N(Yc*)~1000 events/1nb/100 days Better mass resolution: ~10 MeV/c² Sensitivity: ~0.1 nb (3σ, *Γ*~100 MeV)

2.2 Search for new hyperon resonance around the $\Lambda\eta$ threshold

Dalitz plot: $\Lambda_c^+ \rightarrow p K^- \pi^+$ [PRL117.011801]

∗ M(pK⁻)⁵⁴

1D projection -- $M(pK^-)$

Then, what's that?

- The peak position is ~1663 MeV, near the $\Lambda\eta$ threshold (1663.5 MeV)
- Width is ~10 MeV, significantly narrower than $\Lambda,$ Σ resonances in this region
 - Λ(1670): 25-50 MeV
 - $-\Sigma$ (1660): 40-200 MeV
 - $-\Sigma$ (1670): 40-80 MeV
 - Λ(1690): ~60 MeV

A new idea

- 2 independent groups claim there is a new narrow Λ^* resonance at this energy with J=3/2
 - Kamano et al. [PRC90.065204, PRC92.025205] $J^{P}=3/2^{+}$ (P₀₃), M=1671+2-8 MeV, Γ=10+22-4 MeV
 - Liu & Xie [PRC85.038201, PRC86.055202] $J^{P}=3/2^{-}$ (D₀₃), M=1668.5±0.5 MeV, Γ=1.5±0.5 MeV
- The reason is the same
 - From K⁻p $\rightarrow \Lambda \eta$ measurement near the threshold by Crystal Ball collaboration at BNL [PRC64.055205]
 - Especially the angular distribution \rightarrow Model independent
- There is no state in quark models
 - It must be an exotic
 - $udss\bar{s}$ pentaquark??

Differential cross sections (1)

Differential cross sections (2)

- Flat near the threshold

 Expected for J=1/2 (S-wave)
- Concave-up around p_K=734 MeV/c (vs=1669 MeV)
- Flat again for p_K > 750 MeV/c (Vs=1677 MeV)
- Concave shape requires J=3/2 amplitude

 → reason for a narrow resonance; model independent

Measurement@Belle (II)

- The peak in the M(pK⁻) spectrum in $\Lambda_c \rightarrow pK^-\pi^+$ decay is due to the new Λ^* resonance?
- If yes, key measurements are
 - J=3/2 angular distribution (correlation) between π^+ and K⁻ 1+3cos² θ for pure J=3/2 amplitude flat for pure J=1/2 amplitude
 - I=0, strongly couples to $\Lambda\eta$ channel
 - → Important to see $\Lambda\eta$ channel
 - Width
- Parity is also important, but...
 - Needs measurement of polarization of Λ in the $\Lambda\eta$ channel.
 - In principle possible, but needs very high statistics
 - Impossible @Belle, difficult even at Belle2

New experiment at J-PARC

- Repeat the Kp $\rightarrow \Lambda \eta$ experiment again with a large acceptance detector, i.e., TPC (HypTPC)
- Principle
 - − K beam momentum: 720-770 MeV/c
 2 settings: 735 MeV/c & 755 MeV/c (±3%)
 → K1.8BR or K1.1 beamline
 - Momentum resolution: 1 MeV/c or better \rightarrow Can identify narrow resonance of Γ =1.5 MeV
 - Detect $\Lambda \rightarrow p\pi^-$, identify η by missing mass
 - Both Λ and η go to forward direction

Construction of the HypTPC

Yield estimation

- Beam intensity: 30 k/spill
- Target: Liq. H₂ 5 cm (0.35 g/cm² or 2.1x10²³/cm²)
- Reaction rate: 6.3/spill for 1 mb
- Acceptance & efficiency: 0.3?
 ← need a simulation
- Event rate: 1200/h
 - \rightarrow 200k events in a week.

Cf. Crystal Ball: 2700 events in total

Identify parity

 Angular distribution is the same for 3/2⁺ (P wave) and 3/2⁻ (D wave)

– Again, we need polarization of the final Λ

• Crystal-Ball data is very poor for polarization

- Support for new resonance is not obtained

Polarization – Parity in CB data

 Crystal ball data is average of 722-750 MeV/c & 750-770 MeV/c, not for each momentum.
 ⇔ Meanwhile, calculations are done on the points.

Identify parity

 Angular distribution is the same for 3/2⁺ (P wave) and 3/2⁻ (D wave)

– Again, we need polarization of the final Λ

- Crystal-Ball data is very poor for polarization
 Support for new resonance is not obtained
- How we can distinguish P&D?
 - P wave no node, D wave node
- We need δp~0.05 for each momentum/angle bin
 → Large statistics needed
 x16: δP 0.2 → 0.05
 x10: binning 2 → 20
 - → Need ~2 weeks of beamtime. Looks feasible

2.3 Hyperon spin structure study using Λ_c^+ decay

Idea

- To measure hyperon polarization in $\Lambda_{\rm c}$ decay
 - Semileptonic: $\Lambda_c \rightarrow Y + e(\mu) + \nu$
 - Non-leptonic: $\Lambda_{c} \rightarrow Y + \pi$
 - Main target is $Y=\Lambda(1405)$
- Why it is interesting?
 - s quark from charm decay is polarized
 - Naively, polarization transfer from quark to hyperon
 How much fraction of spin of hyperon is carried out by the quark. E.g., quark model predicts P(Λ)=P(s)~-0.9
 - We can discuss hyperon spin structure.
 - For $\Lambda(1405)$, 3 quark state should have P~+0.3, while 5 quark state (or KN bound state) should have P~0.

Existing data (from PDG)

- $\Lambda_c \rightarrow \Lambda + e(\mu) + v$: $P = \alpha = -0.86 \pm 0.04$ OK
- $\Lambda_c \rightarrow \Lambda + \pi^+$: P=-0.91±0.15 OK
- $\Lambda_c \rightarrow \Sigma^+ + \pi^0$: P = -0.45 ± 0.32 OK?
 - Contribution of strange quark should give P~+0.3, but there is a contribution of up quark P~-0.6, giving P~-0.3 in total

Seemingly, the naïve model can explain the existing data

Semileptonic vs nonleptonic modes

- Theoretical cleanness vs experimental easiness
- Semileptonic: no peak in invariant mass because of missing v.
 - BG may be severe, very complicated analysis
 - Tagging $\Lambda_{\rm c}$ in missing mass? Up to 100 counts in the present Belle, a few thousands expected in Belle II.
 - → Detection may be possible with Belle data, polarization needs Belle II statistics
- Non-leptonic:
 - Study possible with Belle data, but interpretation is the issue
 - Measure mass dependence \rightarrow identify 2-pole structure??
 - Λ (1520) as a control sample

Summary

- Belle data taking is over, but still actively publishing results. Many interesting results coming on baryon spectroscopy.
 - Spectroscopy of $\Xi_{\rm c}$ and $\Omega_{\rm c}$
 - The first observation of doubly Cabibbo-suppressed decay in charmed baryon, $\Lambda_c^+ \rightarrow p K^+ \pi^-$
 - Measurement of baryon production rates
 - Search for Ps in $\Lambda_c^+ \rightarrow p \phi \pi^0$
- Interesting results are expected in Belle II, where 50 times more statistics than Belle. And J-PARC, too.
 - Spin-parity determination of most known charmed baryons
 - New hyperon resonance(s), hyperon spin structure study to identify exotics
 - And more
Backup

Inclusive differential cross sections, hyperons

"Inclusive" cross sections (including feed-down) are obtained as a function of hadron scaled momentum (x_p). $x_p = p/\sqrt{s/4 - M^2}$ (M, p : mass and CM momentum)

Inclusive differential cross sections, hyperons

"Inclusive" cross sections (including feed-down) are obtained as a function of hadron scaled momentum (x_p). $x_p = p/\sqrt{s/4 - M^2}$ (M, p : mass and CM momentum)

Inclusive differential cross sections, charmed baryons

Inclusive differential cross sections, charmed baryons

Results for hyperons

Results of charmed baryons

Discussion

- Assuming that a c-quark picks up a diquark from vacuum,
 - Schwinger-like "tunnel effect" of diquark and anti-diquark

 $\sigma \propto \exp(-\pi \mu^2/\kappa)$ μ : diquark mass B. Andersson et al., Phys. Scientic, 32, 574 (1985)

- $\sigma(\Sigma_c)/\sigma(\Lambda_c) = 0.27 \pm 0.07$
 - Λ_c : spin-0 diquark, Σ_c : spin-1 diquark,
 - mass difference of spin-1 and 0 diquarks

$$\begin{split} m(ud_1)^2 &- m(ud_0)^2 \\ &= (8.2 \pm 0.8) \times 10^4 \ ({\rm MeV}/c^2)^2 \\ \end{split}$$
 ref. $490^2 - 420^2 = 6.4 \times 10^4 \ ({\rm MeV}/c^2)^2$

B. Andersson et al., Phys. Rept. 97, 31 (1983)

Slightly higher than reference but consistent with the spin-1/0 diquark mass difference!

