

Indian Institute of Technology Guwahati

Belle II: Physics Prospects and Current Status

Bipul Bhuyan

(On behalf of the Belle II Collaboration)

3rd International Conference on Particle Physics and Astrophysics Moscow, October 2 - 5, 2017

The legacy of the **B**-factories

- The 1st generation of *B*-factories, BaBar and Belle collected about 1.5 ab⁻¹ of data during 1999 – 2010.
- Made significant contribution to the understanding of the flavor dynamics in the Standard Model.
 - Discovery of CP violation and confirmation of the CKM description of flavor physics.
 - Precision measurement of the CKM matrix elements and the angles of the unitarity triangle.
 - Search for rare decays such as $B \rightarrow \tau v, D\tau v$
 - Constraints on various new physics models from the measurement of $b \rightarrow s\gamma$ branching ratio.
 - Observation of several new hadronic states, such as X, Y, Z states.
 - Strong evidence of D meson mixing.
 - Constraints on CP-odd light Higgs in the NMSSM and other charged Higgs model.

Integrated luminosity of B factories

Belle II at SuperKEKB

- KEKB e⁺ e⁻ collider is being upgraded to SuperKEKB collider.
 - 40 times more luminosity than KEKB; Collect 50 ab⁻¹ by 2024.
 - Belle detector is getting upgraded to Belle II detector to deal with the higher background due to the higher luminosity.
- Belle II provides a unique opportunity to constrain and search for new physics 2016 at the intensity frontier in a complementary way to LHC.
 - Most of the final state particles are exclusively reconstructed. Much cleaner environment
 - Search for NP through precision measurement of rare and suppressed processes
 - Still room for corrections from NP at O(10%).
 - Resolve the tensions between results from B –factories. Explore these possible hints for NP with higher precision.
- Only a few selected topics will be presented in this talk.

Belle II Physics Prospects – CKM

Belle II Physics Prospects – CKM

Belle II Physics Prospects – $B \rightarrow D^{(*)} \tau v$

Belle II

Belle II Physics Prospects – $B \rightarrow \tau v$

In the type II 2-Higgs doublet model (2HDM) (W.S. Hou, PRD 48, 2342 (1993)),

$$\mathcal{B}(B \to \tau \nu) = \mathcal{B}_{\rm SM} \times r_{\rm H}, \quad r_{\rm H} = \left(1 - \tan^2 \beta \frac{m_B^2}{m_{H^{\pm}}^2}\right)^2 \quad \text{If } \tan^2 \beta \frac{m_B^2}{m_{H^{\pm}}^2} \quad \approx 2, \ r_{\rm H} < 1,$$

 $\tan\beta$ is the ratio of the VEVs of the two doublets.

A charged Higgs breaks lepton universality.

Belle II Physics Prospects – $B \rightarrow \tau v$

Current world average • $\delta BF(B \rightarrow \tau v)$ 80 ± 0.8 (hadronic and SL tag) Belle II Projection BaBar (Had tag) $B \rightarrow \tau \nu$ 70F 83+0.58 $BR = (1.09 \pm 0.24) \times 10^{-4}$ Exp. L_{svs}=46 ab⁻¹ 60E BaBar (SL tag) 50F Statistics No deviation from SM. 1.25 ± 0.39 • Systematics Belle (Had tag) 40F Theory (expected) With 50 ab⁻¹, the experimental • 0.72+0.29 Theory (current) 30 sensitivity will reach ~6%. Belle (SLtag) ~6% precision SM WA (δ~18%) Belle II projections for 3 Belle Sensitivity 10 $\mathcal{B}(B^- \rightarrow \tau^- \nu_{-})$ (10⁻⁴) charged Higgs sensitivity Integrated Luminosity [ab-1] 5 ab⁻¹ Now 50 ab-1 tanls tanß tanß 80 80 80 Excl. at 60 60 60 6σ 5σ 40404σ 3σ 20 20 20 2σ 400 600 200 800 100 200 400 600 800 1000 400 200 600 800 1000 m_H [GeV] m_{H*} [GeV] m_u, [GeV] R. Itoh

10/2/17

10

Belle II Physics Prospects – Charm Physics

• Strong evidence of $D^0 - \overline{D}^0$ mixing at the *B*-factories. Similar to neutral kaon mixing.

• *D^o* meson mass eigenstates are expressed as:

$$D_{1,2}^{0} \ge p \left| D^{0} \right\rangle \pm q \left| \overline{D}^{0} \right\rangle$$
 with $p^{2} + q^{2} = 1$

If p = q, the two mass eigenstates are CP-even and CP-odd; otherwise CP is violated. • Charm mixing is characterized by the parameters: $x = \Delta m / \Gamma$ and $y = \Delta \Gamma / 2\Gamma$ Δm and $\Delta \Gamma$ are the mass and decay width differences of mass eigenstates, respectively and Γ is the average D^0 decay width and ϕ , the phase of (q/p).

Charm mixing in $D^0 \rightarrow K_s \pi^+ \pi^-$					
	Belle Uncertainty (~0.9 ab ⁻¹)	Belle II Uncertainty (~50 ab ⁻¹)			
Х	~ 0.21%	~0.08%			
у	~0.17%	~0.05%			
q/p	~0.18	~0.06			
ϕ	~0.21	~0.07			

Belle II Physics Prospects – Charm Decays

- Large data sample from Belle II will improve the measurements of mixing parameter in the charm sector.
 - Will enable direct and indirect measurements of CPV.
 - Substantial improvement in the proper time resolution with respect to the *B*-factories.
 - New tagging method based on the rest of the event are being developed.

- Search for rare decays in the charm sector such as $D^{\circ} \rightarrow \gamma \gamma$
 - FCNC mode: Expected BF ~ 10⁻⁸
 - Belle: BF < 8.5 X 10⁻⁷ @90% CL.
 - Belle II Sensitivity with 50 ab^{-1} data: BF ~ $10^{-7} 10^{-8}$

Lepton Flavor Violation in τ Decays

- LFV violation in the charged leptons is highly suppressed in the SM even after the inclusion of neutrino masses:
 - Neutrino masses are expected to be much smaller compared to the electroweak scale, $M_W \approx 80.4$ GeV.
 - Searches of LFV in the SM is beyond experimental reach:

$$B(\tau \rightarrow l\gamma) \propto \left(\frac{M_{\nu_{\tau}}^2 - M_{\nu_{l}}^2}{M_W^2}\right)^2 \approx 10^{-50} \sim 10^{-54}$$

- Observation of LFV in the charged lepton is a clear signal for NP beyond SM:
 - Many extensions of the SM such as supersymmetry, little Higgs models, extra dimensions predict enhanced LFV.
 - LFV in τ decays can be as high as $O(10^{-8})$
 - Within the reach of Belle II

10/2/17

 W^{2}

Lepton Flavor Violation in τ Decays

- Belle II: Sensitivity for LFV decay rates is over 100 times higher than Belle for the cleanest channels ($\tau \rightarrow l\gamma$) and over 10 times higher for other modes, such as $\tau \rightarrow l\gamma$ (due to irreducible background contributions)
- Belle II will collect about $10^{11} \tau$ leptons compared to 10^9 presently available.

10/2/17

SuperKEKB/Belle II Schedule

- Phase I (2016): beams, no collisions, cosmics
- Phase II (2018): collisions, complete Belle II detector except SVD.

NOW

Phase III (end of 2018 – 2024): Full Belle II detector on, Physics run.

Summary

- *B*-factories have already provided unprecedented information on the flavor dynamics in the SM.
 - CPV in *B*-meson decays, evidence for D meson mixing.
 - Provided unexpected new results: new states such as the X, Y, Z states.
 - Hints of NP through measurement of lepton non-universality, in the decay of $B \rightarrow D^{(*)}\tau v$
- Belle II experiment under construction currently.
 - Start of full Physics run: 2018, reach 50 ab⁻¹ by 2023 2024.
 - Belle II detector rolled to the beam collision point in April 2017. Detector integration is continuing.
 - Accelerator commissioning is ongoing, beam was turned on in Feb 2016.
 - Belle II with 50 ab⁻¹ data will provide greater sensitivity and complimentary approach to LHCb in many areas of flavor physics.
 - Unparalleled sensitivity to Unitarity triangles, CPV in the charm physics, spectroscopy, NP searches at the loop level …

10/2/17

Backup Slides

Dark sector searches

 Theoretical models attempting to explain the muon (g-2) anomaly introduces a low-mass spin-1 particle, A[/]

Physics Prospects: Belle II Vs LHCb

=

Observables	Expected th. accuracy	Expected exp. uncer-	Facility (2025)		Observables	Belle or LHCb [*]	Bel	le II	LHCb
		tainty				(2014)	5 ab^{-1}	50 ab^{-1}	$2018 \ 50 \ {\rm fb}^{-1}$
UT angles & sides				Charm Rare	$\mathcal{B}(D_{\tau} \to \mu\nu)$	$5.31 \cdot 10^{-3} (1 \pm 5.3\% \pm 3.8\%)$	2.9%	0.9%	
φ1 [°]	***	0.4	Belle II		$\mathcal{R}(D \to \pi v)$	$10^{-3}(1+9.70) \pm 5.070)$	9 = 0%	0.070	
ϕ_2 [°]	**	1.0	Belle II		$B(D_s \to \tau \nu)$	$5.70 \cdot 10^{-1} (1 \pm 3.7\% \pm 5.4\%)$	3.3%	2.3%	
φ ₃ [°]	***	1.0	Belle II/LHCb		$\mathcal{B}(D^0 o \gamma \gamma) \ [10^{-6}]$	< 1.5	30%	25%	
$ V_{cb} $ incl.	***	1%	Belle II	Charm CP	$A_{mn}(D^0 \to K^+ K^-)$ [10-4]	$22 \pm 21 \pm 0$	11	6	
$ V_{cb} $ excl.	***	1.5%	Belle II	Charm C1	$A_{CP}(D \rightarrow K^+K^-)$ [10]	$-32 \pm 21 \pm 9$	11	0	0 5 0 1
$ V_{ub} $ incl.	**	3%	Belle II		$\Delta A_{CP}(D^{\circ} \to K^+K^-) \ [10^{-5}]$	3.4			0.5 0.1
$ V_{ub} $ excl.	**	2%	Belle II/LHCb		$A_{\Gamma} [10^{-2}]$	0.22	0.1	0.03	$0.02 \ 0.005$
CPV					$A_{CP}(D^0 \to \pi^0 \pi^0) \ [10^{-2}]$	$-0.03 \pm 0.64 \pm 0.10$	0.29	0.09	
$S(B \to \phi K^0)$	***	0.02	Belle II		$A_{CP}(D^0 \to K_c^0 \pi^0)$ [10 ⁻²]	$-0.21 \pm 0.16 \pm 0.09$	0.08	0.03	
$S(B \to \eta' K^0)$	***	0.01	Belle II				0.00	0.00	
$\mathcal{A}(B \to K^0 \pi^0)[10^{-2}]$	***	4	Belle II	Charm Mixing	$x(D^0 \to K_S^0 \pi^+ \pi^-) \ [10^{-2}]$	$0.56 \pm 0.19 \pm \frac{0.07}{0.13}$	0.14	0.11	
$\mathcal{A}(B \to K^+\pi^-)$ [10 ⁻²]	***	0.20	LHCb/Belle II		$y(D^0 \to K_S^0 \pi^+ \pi^-) \ [10^{-2}]$	$0.30 \pm 0.15 \pm {}^{0.05}_{0.08}$	0.08	0.05	
(Semi-)leptonic					$ q/p (D^0 \rightarrow K_S^0 \pi^+ \pi^-)$	$0.90 \pm 0.16 \pm 0.08$	0.10	0.07	
$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	**	3%	Belle II		$\phi(D^0 \to K^0_c \pi^+ \pi^-)$ [°]	$-6 \pm 11 \pm \frac{4}{5}$	6	4	
$\mathcal{B}(B \to \mu \nu) \ [10^{-6}]$	**	7%	Belle II		<i>(S</i> · · <i>)</i> ()	5	-	-	
$R(B \to D\tau\nu)$	***	3%	Belle II	Tau	$\tau \to \mu \gamma \ [10^{-9}]$	< 45	< 14.7	< 4.7	
$R(B \to D^* \tau \nu)$	***	2%	Belle II/LHCb		$\tau \rightarrow e \gamma [10^{-9}]$	< 120	< 39	< 12	
Radiative & EW Penguins					τ · · · · · · · · · · · · · · · · · · ·	< 21.0	< 2.0	< 0.2	
$\mathcal{B}(B \to X_s \gamma)$	**	4%	Belle II		$\gamma \Rightarrow \mu\mu\mu$ [10]	< 21.0	< 5.0	< 0.5	
$A_{CP}(B \to X_{s,d}\gamma) \ [10^{-2}]$	***	0.005	Belle II						
$S(B \to K_S^0 \pi^0 \gamma)$	***	0.03	Belle II						
$S(B \to \rho \gamma)$	**	0.07	Belle II						
$\mathcal{B}(B_s \to \gamma \gamma) [10^{-6}]$	**	0.3	Belle II						
$\mathcal{B}(B \to K^* \nu \overline{\nu}) \ [10^{-6}]$	***	15%	Belle II						
$\mathcal{B}(B \to K \nu \overline{\nu}) [10^{-6}]$	***	20%	Belle II						
$R(B \to K^*\ell\ell)$	**	0.03	Belle II/LHCb						

Example: $b \rightarrow s \overline{s} s$ decays

Value of $\sin 2\phi_1$ differs slightly between $B^0 \rightarrow \phi K_s$ and $B \rightarrow J/\psi K_s$ decays

$$\Delta S = \sin 2\phi_1^{\phi K_s} - \sin 2\phi_1^{J/\psi K^0} = 0.22 \pm 0.17$$

In the SM it should be: $\Delta S = 0$ (*Theory:* ±0.02) If not: New Physics might contribute

Central Drift Chamber (CDC)

	Belle	Belle II	
Innermost sense wire	r=88mm	r=168mm	
Outermost sense wire	r=863mm	r=1111.4mm	
Number of layers	50	56	
Total sense wires	8400	14336	
Gas	He:C ₂ H ₆	He:C ₂ H ₆	
Sense wire	W(Ф30µm)	W(Φ30µm)	
Field wire	Al(φ120µm)	Al(φ120µm)	

Belle II Tracking Detectors

Component	Type	Configuration	Readout	Performance
Beam pipe	Beryllium	Cylindrical, inner radius 10 mm,		
	double-wall	$10 \ \mu m$ Au, 0.6 mm Be,		
		1 mm coolant (paraffin), 0.4 mm Be		
PXD	Silicon pixel	Sensor size: 15×100 (120) mm ²	10 M	impact parameter resolution
	(DEPFET)	pixel size: 50×50 (75) μm^2		$\sigma_{z_0}\sim 20~\mu{ m m}$
		2 layers: 8 (12) sensors		(PXD and SVD)
SVD	Double sided	Sensors: rectangular and trapezoidal	245 k	
	Silicon strip	Strip pitch: $50(p)/160(n) - 75(p)/240(n) \ \mu m$		
		4 layers: 16/30/56/85 sensors		
CDC	Small cell	56 layers, 32 axial, 24 stereo	14 k	$\sigma_{r\phi}=100~\mu{ m m},\sigma_z=2~{ m mm}$
	drift chamber	r = 16 - 112 cm		$\sigma_{p_t}/p_t = \sqrt{(0.2\% p_t)^2 + (0.3\%/eta)^2}$
		- 83 $\leq z \leq$ 159 cm		$\sigma_{p_t}/p_t = \sqrt{(0.1\% p_t)^2 + (0.3\%/\beta)^2}$ (with SVD)

SuperKEKB nanobeams

At SuperKEKB, we increase the luminosity based on "Nano-Beam" scheme (originally proposed for SuperB by P. Raimondi)

 $L = \frac{\gamma_{\pm}}{2er_e} \left(1 + \frac{\sigma_y^*}{\sigma_x^*} \right) \frac{\sqrt{I_{\pm}} \xi_{\pm y}}{\sqrt{\beta_y^*}} \left(\frac{R_L}{R_y} \right)$

- − Vertical β function at IP: 5.9 \rightarrow 0.27/0.30 mm (x20)
- Beam current: $1.7/1.4 \rightarrow 3.6/2.6 \text{ A} (x2)$
 - → $L = 2x10^{34} \rightarrow 8x10^{35} \text{ cm}^{-2}\text{s}^{-1}$ (x40)

Reduce beam size to a few 100 atomic layers!

Parameter		KEKB		SuperKEKB		unite
		LER	HER	LER	HER	units
beam energy E _b		3.5	8	4	7	GeV
CM boost	βγ	0.425		0.28		
half crossing angle	φ	11		41.5		mrad
horizontal emittance	εχ	18	24	3.2	4.6	nm
emittance ratio	к	0.88	0.66	0.37	0.40	%
beta-function at IP	$\beta_x * / \beta_y *$	1200/5.9		32/0.27	25/0.30	mm
beam currents	lb	1.64	1.19	3.6	2.6	А
beam-beam parameter	ξγ	129	90	0.881	0.0807	
beam size at IP	σ_x^*/σ_y^*	100/2		10/0.059		μm
Luminosity	ಕ	2.1 x 10 ³⁴		8 x 10 ³⁵		cm-2s-1

10/2/17

Ukraine

3

