Belle II legacy and correlation with HL-LHC

Pablo Goldenzweig (for the Belle II collaboration)

Workshop on the physics of HL-LHC, and perspectives at HE-LHC

> CERN Oct. 30 - Nov. 1, 2017

- · B factories legacy.
- · SuperKEKB and Belle II status and timeline.
- Selection of tensions with the SM and prospects for Belle II and HL-LHC.

Success of the B factories (1999-2010)

- Spectacular accelerator and detector performance.
- Discovery of *CP* violation in *B* decays.
- Confirmation of the CKM picture of flavor physics.
- Discovery of several new particles.
- Probe of rare B decays.
- Limits on New Physics scenarios.

Integrated luminosity of B factories

Complementarity to LHCb

Belle II

- Clean experimental environment.
- Holistic interpretation of events with missing energy (ν).
- Decays with multiple photons.
- Inclusive decays $(B \to X_{s,d}\gamma)$.
- Long-lived particles $(K_S \text{ and } K_L)$.

LHCb

- Large cross section.
- Decays to all charged particle final states.
- Fast mixing.

DOT:D	Poport /	(in)	n no grada)	
D2111	report	(111)	progress	

Observables	Expected th. ac-	Expected exp. un-	Facility (2025)
	curacy	certainty	
UT angles & sides			
ϕ_1 [°]	***	0.4	Belle II
$\phi_2 [\circ]$	**	1.0	Belle II
\$ [°]	***	1.0	Belle II/LHCb
$S(\dot{B}_s \rightarrow J/\psi \phi)$	***	0.01	LHCb
$ V_{cb} $ incl.	***	1%	Belle II
$ V_{cb} $ excl.	***	1.5%	Belle II
V _{wb} incl.	**	3%	Belle II
$ V_{ub} $ excl.	**	2%	Belle II/LHCb
CPV			
$S(B \rightarrow \phi K^0)$	***	0.02	Belle II
$S(B \rightarrow n'K^0)$	***	0.01	Belle II
$\beta_{eff}^{eff}(B_{*} \rightarrow \phi \phi)$ [rad]	**	0.1	LHCb
$\beta^{\text{eff}}(B_* \rightarrow K^{*0}\bar{K}^{*0})$ [rad]	**	0.1	LHCb
$A(B \rightarrow K^0 \pi^0)[10^{-2}]$	***	4	Belle II
$A(B \rightarrow K^{+}\pi^{-})$ [10 ⁻²]	***	0.20	LHCb/Belle II
(Semi-)leptonic		0.20	
$\mathcal{B}(B \rightarrow \tau \nu)$ [10 ⁻⁶]	**	3%	Belle II
$\mathcal{B}(B \rightarrow \mu \mu)$ [10 ⁻⁶]	**	7%	Belle II
$R(B \rightarrow D\tau \nu)$	***	3%	Belle II
$R(B \rightarrow D^* \tau \nu)$	***	2%	Belle II/LHCb
Radiative & EW Penguins			,
$B(B \rightarrow X, \gamma)$	**	4%	Belle II
$A_{CP}(B \rightarrow X_{ed} \gamma) [10^{-2}]$	***	0.005	Belle II
$S(B \rightarrow K_{c}^{0} \pi^{0} \gamma)$	***	0.03	Belle II
$2\beta^{\text{eff}}(B_* \rightarrow d\gamma)$	***	0.05	LHCb
$S(B \rightarrow a\gamma)$	**	0.07	Belle II
$\mathcal{B}(B \rightarrow \infty)$ [10 ⁻⁶]	**	0.3	Belle II
$\mathcal{B}(B \rightarrow K^* \nu \overline{n}) [10^{-6}]$	***	15%	Belle II
$\mathcal{B}(B \rightarrow K u \overline{\mu}) [10^{-6}]$	***	20%	Belle II
$a^2 A_{rm}(B \rightarrow K^* uu)$	**	0.05	LHCb/Belle II
$B(B \rightarrow \pi\pi)$ [10 ⁻³]	***	< 2	Belle II
$\mathcal{B}(B \rightarrow \mu\mu)$	***	10%	LHCb/Belle II
Charm		-070	
$\mathcal{B}(D \rightarrow \mu \mu)$	***	0.9%	Belle II
$B(D \rightarrow \pi u)$	***	2%	Belle II
$\Delta A_{cm}(D^0 \rightarrow K^+ K^-)$ [10 ⁻⁴]	**	0.1	LHCb
$A_{cp}(D^0 \rightarrow K^0 \pi^0) [10^{-2}]$	**	0.03	Belle II
$ a/a (D^0 \to K^0 = + = -)$	***	0.02	Rollo Ii
$\phi(D^0 \rightarrow K_0^0 \pi^+ \pi^-)$ [°]	***	4	Belle II
Tan			Den H
$\tau \rightarrow u \sim [10^{-9}]$	***	< 5	Belle II
$\tau \rightarrow e^{\gamma} [10^{-9}]$	***	< 10	Belle II
= 1 10 [10=9]	***	< 0.2	Bollo II/I HCh
$1 \rightarrow \mu\mu\mu$ [10		< 0.5	Delle H/LHCD

Upgrade for SuperKEKB and Belle II to achieve 40x peak \mathcal{L} under 20x bkgd

- Reduction in the beam size by 1/20 at the IP.
- Doubling the beam currents.

- ▶ First turns achieved Feb. 2016
- ► Beam-background studies ongoing

The intensity frontier

Belle II targets:

Instantaneous luminosity $8 \times 10^{35} \text{cm}^{-2} \text{s}^{-1}$ Integrated luminosity 50ab^{-1} by 2024

P. Goldenzweig

Belle II detector

Targeted improvements: Increase K_S^0 efficiency; Improve IP and secondary vertex resolution, K/π separation, and π^0 efficiency; Particle and μ ID in endcaps.

P. Goldenzweig

Vertex detector

Si pixel (2 layers) and strip (4 layers):

• 1^{st} pixel layer at r = 14mm to IP [Belle at r = 20mm]

> Improves vertex resolution along z-axis

• Larger SVD w/outer layer at r = 135mm. [Belle at r = 88mm]

Higher fraction of K_S ' with vertex hits improves vertex resolution

Tracking detector

Central Drift Chamber:

- Larger outer radius of 1111mm (Belle 863mm) allows for improved p resolution.
- Smaller cells with lower occupancy and capacity for higher hit rate.

Simulated track reconstruction efficiency Stable performance for up to 3x predicted beam BG

Single track Showering

Full readout of the CDC

Particle identification

Two RICH systems covering full momentum range

- Barrel: Time of Propagation (TOP) counter (16 modules).
 - \Rightarrow Measure x-y position of Cherenkov γ 's and their arrival time.
- Forward Endcap: Aerogel Ring Imaging Cherenkov detector (ARICH)
 - \Rightarrow Proximity focusing with silica aerogel (4 σ separation at 1 3.5 GeV/c)

Electromagmetic calorimeter

Re-usage of Belle's CsI(TI) crystal calorimeter, but with new electronics with 2MHz wave form sampling to compensate for the larger beam-related backgrounds and the long decay time of CsI(TI) signals.

 \Rightarrow Resolution much better at Belle II

Peak energy resolution in the ECL barrel as a function of true photon energy

Belle II today

Belle II roll-in (April 11)

Global cosmic run (August)

P. Goldenzweig

Belle II & correlation w/HL-LHC

31.10.2017 12 / 36

Roadmap

Phase 2: Feb.-July 2018

- First collisions.
- Beam commissioning.
- Physics run without VXD on $\Upsilon(4S)$ & $\Upsilon(6S)$. $\mathcal{L} \approx 20 \mathrm{fb}^{-1}$.
 - $\Rightarrow Physics measurements:$ $\Upsilon(6S) conventional$ bottonium and exotic states(e.g., Z_b, QCD hybrids inBB^{*})(talk by T. Kuhr).
- New triggers for exotic dark signatures in low multiplicity events (talk by T. Ferber).

SuperKEKB luminosity projection

Phase 3:

• Luminosity tuning. \Rightarrow Physics run with full Belle II: $\mathcal{L} = 5(50)ab^{-1}$ by 2020(2024).

Many open questions and as-yet unobserved processes awaiting Belle II data...

The future of the UT (?)

- Belle II expects to improve precision to $\alpha \approx 0.3^{\circ}, \, \beta \approx 1.0^{\circ}, \, \gamma \approx 1.5^{\circ}.$
- Improvement in precision should help to resolve the tension between inclusive and exclusive measurements of $|V_{ub}|$ and $|V_{cb}|$.

Future sensitivities assuming data consistent with the SM:

CKM

Belle $5ab^{-1}$, LHCb $7fb^{-1}$ (2020)

Belle $50ab^{-1}$, LHCb $50fb^{-1}$ (2030)

arXiv:1309.2293

P. Goldenzweig

$\overline{B} \to D^{(*)} \tau \overline{\nu}$

Belle:

- Very clean prediction from theory.
- New Physics could change the ratios $\mathcal{R}(D^{(*)}) = \frac{\mathcal{B}(\overline{B} \to D^{(*)}\tau\nu)}{\mathcal{B}(\overline{B} \to D^{(*)}\ell\nu)}.$
- Effect could be different for D and D^* .
- World average 4σ away from SM.

$\overline{B} \to D^{(*)} \tau \overline{\nu}$ with Belle II & LHCb

arXiv:1709.10308: J. Albrecht, F. U. Bernlochner, M. Kenzie, S. Reichert, D. M. Straub, A. Tully

Measurement	SM	Current World	Current		Project	ed Unce	rtainty ¹	
	prediction	Average	Uncertainty	Bel	lle II		LHCb	
				$5ab^{-1}$	$50 \mathrm{ab}^{-1}$	$8 \mathrm{fb}^{-1}$	$22 f b^{-1}$	$50 \mathrm{fb}^{-1}$
				2020	2024	2019	2024	2030
R(D)	(0.299 ± 0.003)	$(0.403 \pm 0.040 \pm 0.024)$	11.6%	5.6%	3.2%	-	-	-
$R(D^*)$	(0.257 ± 0.003)	$(0.310\pm 0.015\pm 0.008)$	5.5%	3.2%	2.2%	3.6%	2.1%	1.6%

¹Projected uncertainties not including improvements in detectors and algorithms

P. Goldenzweig

Improved algorithms @ Belle II

Tagging ε on MC

Tag	FR^1	FEI Belle	FEI Belle II
Hadronic B^+	0.28%	0.76%	0.66%
SL B^+	0.67%	1.80%	1.45%
Hadronic B^0	0.18%	0.46%	0.38%
SL B^0	0.63%	2.04%	1.94%

¹Belle Full Reconstruction algorithm.

P. Goldenzweig

Belle II & correlation w/HL-LHC

Deep NN based flavor tagger

	1	agging a on MO
	Category-based	Deep NN
Belle II MC	$33.29 \pm 0.01\%$	$40.69 \pm 0.03\%$
Belle MC	$29.30 \pm 0.10\%^2$	$34.42 \pm 0.09\%$
	2	

²Belle flavor tagger

Deep NN based $e^+e^- \rightarrow q\overline{q}$ background suppression

17 / 36

Electroweak penguin decays $b \to s \ l^+ l^-$

• Within the SM, decays proceed via one loop diagram:

JHEP0712:040,2007

 $\mathcal{R}_K = \frac{\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \to K^+ e^+ e^-)} = 1.00030^{+0.00010}_{-0.00007}$

- LHCb reported a 2.6 σ deviation for the dilepton invariant mass squared region $1 < q^2 < 6 \text{ GeV}^4/c^2$: $\mathcal{R}_K = 0.745^{+0.090}_{-0.074} \pm 0.036$ Phys. Rev. Lett. **113** 151601 (2016)
- Electrons and muons have the same ε at Belle II: \Rightarrow Both low and high q^2 regions possible.

P. Goldenzweig

Full angular analysis of $B \to K^* l l$

2017 ATLAS & CMS results, and lepton-flavor-dependent angular analysis by Belle

Belle: PRL 118, 111801 (2017)

- Largest deviation of 2.6σ from the SM for the muon channel for $4 < q^2 < 8 \text{ GeV}^4/c^2$.
- Electron channel deviation of 1.1σ .
- Belle II and LHCb will be comparable for this process.
- Belle II will be able to perform an isospin comparison of K^{*+} and K^{*0} , or the ground states K.

Belle II sensitivity of P_5'

$q^2 (GeV^2)$	Belle	Belle II $(50ab^{-1})$
0.10 - 4.00	0.416	0.059
4.00 - 8.00	0.277	0.040
10.09 - 12.00	0.344	0.049
14.18 - 19.00	0.248	0.033

Plot: S. Wehle

P. Goldenzweig

Belle II & correlation w/HL-LHC

31.10.2017 19 / 36

Neutrino EWP decays $b \to s, d\nu\overline{\nu}$

\Rightarrow The ultimate test of Belle II

- Theoretically clean due to a maximum of one electromagnetically interacting charged particle in the final state, as opposed to $K^{(*)}l^+l^$ decays.
- Several new physics models (SUSY, non-standard Z coupling) could enhance these decays.

New Belle semileptonic tag result: arXiv:1702.03224 (to appear in PRD(RC))

energy in the calorimeter:

 $E_{ECL} = \sum E_{Calor} - (\sum E_{tag} + \sum E_{sig})$

Sum of energies of neutral clusters not associated with reconstructed particles

GeV

Events / (0.1

- Expected sensitivities of $\mathcal{B}(B \to K^* \nu \overline{\nu})$ to reach 10% with 50ab⁻¹ (comparable with SM predictions).
- Longitudinal polarization (f_L) of K^* reaches 0.08 for charged and neutral B decays. (SM uncertainty is 0.03 arXiv:1409.4557.)

Sensiti	Sensitivities of modes with $\nu \overline{\nu}$ in the final state					
Observables	Belle 0.71 ab^{-1}	Belle II 5 ab^{-1}	Belle II 50 ab^{-1}			
$\mathcal{B}(B^+ \to K^+ \nu \bar{\nu})$	< 450%	30%	11%			
$\mathcal{B}(B^0 \to K^{*0} \nu \bar{\nu})$	< 180%	26%	9.6%			
$\mathcal{B}(B^+ \to K^{*+} \nu \bar{\nu})$	< 420%	25%	9.3%			
$f_L(B^0 \to K^{*0} \nu \bar{\nu})$	—	—	0.079			
$f_L(B^+ \to K^{*+}\nu\bar{\nu})$	—	—	0.077			
$\mathcal{B}(B^0 o \nu \bar{ u}) imes 10^6$	< 14	< 5.0	< 1.5			

B2TiP Report (in progress)

 $B \to K^{(*)} \nu \overline{\nu}$ and $B \to \nu \overline{\nu}$ @ Belle II

NP in $B \to K^{(*)} \nu \overline{\nu}$ @ Belle II

Constraints on NP contributions to C_L^{NP} & C_R^{NP} (norm. to the SM value of C_L)

- Gray areas show the 90% CL excluded regions from Belle & BaBar.
- Allowed region (@68% CL) of B → K⁺νν with 50ab⁻¹ (assuming sensitivities in prev. slide)
- Constraints from $B \to K^* \nu \overline{\nu}$ using \mathcal{B} only.
- Constraints from $B \to K^* \nu \overline{\nu}$ using \mathcal{B} and f_L .

- ▶ The SuperKEKB accelerator is operational and beam background studies are under way.
- ▶ The Belle II detector construction is nearing completion.
- ▶ Physics with partial detector scheduled for early 2018.
- ▶ Full detector to begin taking data in late 2018.
- ▶ Broad program to search for NP with flavor observables.
- ► Significant complementarity with HL-LHC in many interesting channels.

Extra material

Which tag-side reconstruction?

$\mathcal{R}(D^*)$ with SL tag @ Belle

Numerator in $\mathcal{R}(D^*)$

Normalization events are double semileptonic decays.

Denominator in $\mathcal{R}(D^*)$

Separate correctly reconstructed signal and normalization events using NeuroBayes NN with the following variables:

- Missing mass squared: $M_{\text{miss}}^2 = \sqrt{(2E_{\text{beam}} \sum_i E_i)^2 |\sum_i \vec{p_i}|^2}$
- Visible energy: $E_{\text{vis}} = \sum_{i} E_{i}$, where (\vec{p}_{i}, E_{i}) is the reconstructed four-momentum at the $\Upsilon(4S)$ rest frame of particles used in the reconstruction.
- $\cos \theta_{B-D^*\ell}$
- \Rightarrow Trained on MC samples of signal and normalization.

Dominant backgrounds:

- Fake (falsely reco'd) D^* .
- $B \to D^{**} l \nu_l$, with $D^{**} \to D^{(*)}$
- $B \to X_c D^*$, with $X_c \to$ decaying semileptonically.

Separated from signal and normalization using the sum of energies of neutral clusters not associated with reco'd particles: Energies

2D fit to	NN	and	E_{ECL}	to extract
sig	nal a	nd no	rmaliza	tion

Component	Yield	Shape
Signal	Float	1D X 1D
Normalization	Float	2D
Fake $D^{(*)}$	Fix	2D
$B \to D^{**} l \nu$	Float	2D
Other	Fix	2D

2D fit to NN and E_{ECL} :

$$\mathcal{R}(D^*) = \frac{1}{\mathcal{B}(\tau^- \to l^- \bar{\nu}_l \nu_\tau)} \cdot \frac{\varepsilon_{\text{norm}}}{\varepsilon_{\text{sig}}} \cdot \frac{N_{\text{sig}}}{N_{\text{norm}}}$$

 $\varepsilon_{\rm norm}/\varepsilon_{\rm sig} = 1.289 \pm 0.015$ (from MC simulation)

 $\mathcal{R}(D^*) = 0.302 \pm 0.030(\text{stat}) \pm 0.011(\text{syst}) \quad (13.8\sigma)$

$\mathcal{R}(D^*)$ with SL tag @ Belle

	$\mathcal{R}(D^*)$ [%]		
Sources	$\ell^{\rm sig} = e, \mu$	$\ell^{sig} = e$	$\ell^{\rm sig} = \mu$
MC statistics for PDF shape	2.2%	2.5%	3.9%
PDF shape of the normalization	$^{+1.1}_{-0.0}\%$	$^{+2.1}_{-0.0}\%$	$^{+2.8}_{-0.0}\%$
PDF shape of $B \to D^{**} \ell \nu_{\ell}$	$^{+1.0}_{-1.7}\%$	$^{+0.7}_{-1.3}\%$	$^{+2.2}_{-3.3}\%$
PDF shape and yields of fake $D^{(*)}$	1.4%	1.6%	1.6%
PDF shape and yields of $B \to X_c D^*$	1.1%	1.2%	1.1%
Reconstruction efficiency ratio $\varepsilon_{\rm norm}/\varepsilon_{\rm sig}$	1.2%	1.5%	1.9%
Modeling of semileptonic decay	0.2%	0.2%	0.3%
${\cal B}(au^- o \ell^- ar u_\ell u_ au)$	0.2%	0.2%	0.2%
Total systematic uncertainties	$^{+3.4}_{-3.5}\%$	$^{+4.1}_{-3.7}\%$	$^{+5.9}_{-5.8}\%$

- Dominant uncertainty arises from the limited size of the MC samples for the PDF shapes. \Rightarrow Evaluated with Toy MC studies.
- Large error due to poorly known $\mathcal{B}(B \to D^{**} l\nu_l)$ and of the D^{**} decay. \Rightarrow Varied within their uncertainties.

Consistent results for individual samples (separated @ B_{sig}) $\mathcal{R}(D^*) = 0.311 \pm 0.038 \pm 0.013 \ (\ell^{sig} = e)$ $\mathcal{R}(D^*) = 0.304 \pm 0.051 \pm 0.018 \ (\ell^{sig} = \mu)$ P. Goldenzweig Belle II & correlation w/HL-LHC 31.10.2017 29 / 36

Extended binned ML fit to E_{ECL} :

- Histogram templates to model signal and bkgds from charm *B* decay, charmless *B* decay, and continuum.
- Relative fractions of the background components fixed to MC expectations.
- Signal and overall background yield allowed to vary.

Channel	Observed N_{sig}	Significance
$(+\nu\overline{\nu}$	$17.7 \pm 9.1 \pm 3.4$	1.9σ
$\zeta_{S}^{0} \nu \overline{\nu}$	$0.6 \pm 4.2 \pm 1.4$	0.0σ
$(*^+\nu\bar{\nu}$	$16.2 \pm 7.4 \pm 1.8$	2.3σ
$(*^0 \nu \overline{\nu}$	$-2.0 \pm 3.6 \pm 1.8$	0.0σ
$+\nu\bar{\nu}$	$5.6 \pm 15.1 \pm 5.9$	0.0σ
$^{0}\nu\bar{\nu}$	$0.2 \pm 5.6 \pm 1.6$	0.0σ
$+\nu\bar{\nu}$	$6.2 \pm 12.3 \pm 2.4$	0.3σ
$^{0}\nu\bar{\nu}$	$11.9~\pm~~9.0~\pm~3.6$	1.2σ

• Expected (exp.) and observed upper limits at the 90% confidence level (including systematic uncertainties)

Channel	Efficiency	Expected Limit	Measured Limit
$K^+ \nu \bar{\nu}$	2.16×10^{-3}	$0.8 imes 10^{-5}$	1.9×10^{-5}
$K^0_S \nu \bar{\nu}$	$0.91 imes 10^{-3}$	1.2×10^{-5}	$1.3 imes 10^{-5}$
$K^{*+}\nu\bar{\nu}$	$0.57 imes 10^{-3}$	$2.4 imes 10^{-5}$	6.1×10^{-5}
$K^{*0}\nu\bar{\nu}$	$0.51 imes 10^{-3}$	$2.4 imes10^{-5}$	$1.8 imes10^{-5}$
$\pi^+ \nu \bar{\nu}$	$2.92 imes 10^{-3}$	$1.3 imes10^{-5}$	$1.4 imes 10^{-5}$
$\pi^0 \nu \bar{\nu}$	1.42×10^{-3}	$1.0 imes 10^{-5}$	$0.9 imes10^{-5}$
$\rho^+ \nu \bar{\nu}$	1.11×10^{-3}	$2.5 imes 10^{-5}$	$3.0 imes 10^{-5}$
$ ho^0 u \overline{ u}$	$0.82 imes 10^{-3}$	2.2×10^{-5}	$4.0 imes 10^{-5}$

Combine charged and neutral modes:

• The systematic uncertainties are evaluated on independent MC and data control samples for charged and neutral modes.

 \Rightarrow Can be considered uncorrelated.

• Add the $-\mathcal{L}$ and scale the \mathcal{B} of the neutral modes by τ_B^+/τ_B^0 and repeat the calculation of the limit:

 $\mathcal{B}(B \to K\nu\bar{\nu}) < 1.6 \times 10^{-5}$ $\mathcal{B}(B \to K^*\nu\bar{\nu}) < 2.7 \times 10^{-5}$ $\mathcal{B}(B \to \pi\nu\bar{\nu}) < 0.8 \times 10^{-5}$ $\mathcal{B}(B \to \rho\nu\bar{\nu}) < 2.8 \times 10^{-5}$

 $B \to h^{(*)} \nu \overline{\nu}$ with SL tag @ Belle

	$K^+ \nu \bar{\nu}$	$K^0_{ m S} \nu \bar{\nu}$	$K^{*+}\nu\bar{\nu}$	$K^{*0}\nu\bar{\nu}$	$\pi^+ \nu \bar{\nu}$	$\pi^0 u \bar{ u}$	$ ho^+ u \bar{ u}$	$\rho^0 \nu \bar{\nu}$
$K_{\rm L}^0$ veto	0.2	0.2	0.1	0.2	0.6	0.4	0.6	0.0
fixed fraction	0.4	0.3	0.1	0.2	1.3	0.1	0.1	1.0
continuum correction	2.0	0.0	0.0	0.0	3.1	0.0	0.0	0.0
tag correction	0.5	0.2	0.1	0.1	1.9	0.1	0.2	0.5
shape uncertainty	2.6	1.3	1.8	1.7	4.5	1.5	2.3	3.4
fit bias	0.2	0.1	0.2	0.1	0.2	0.1	0.2	0.2
total	3.4	1.4	1.8	1.8	5.9	1.6	2.4	3.6

- Uncertainties related to the signal yield (table [absolute]) are estimated by refitting the data with each quantity varied by $\pm 1\sigma$, with the exception of the shape uncertainty which is evaluated from Toy MC studies.
- Remaining uncertainties include: π^0 and charged track veto (4%); raw track requirement (1%); particle ID efficiency (2%) π^0 efficiency (4%), K_S^0 efficiency (2.2%) $N_{B\overline{B}}$ (1.4%).

Figure 17.4.4. The dominant Tree-level (a) and Penguin-loop (b) Feynman diagrams in the two-body decays $B \to K\pi$ and $B \to \pi\pi$ (Lin, 2008).

Measurements of DCPV in $B^+ \to K^+\pi^0$ found to be different than in $B^0 \to K^+\pi^-$, contrary to naive expectation from the presence of electroweak penguin diagrams.

 $\mathcal{A}_{K^+\pi^0} - \mathcal{A}_{K^+\pi^-} = 0.112 \pm 0.027 \pm 0.007 \ (4\sigma)$

The difference could be due to:

- Neglected diagrams contributing to *B* decays (theoretical uncertainty is still large).

 $K^+\pi^-:T+P+P^C_{EW}$

- $K^{+}\pi^{0}: T + P + C + P_{EW} + P_{EW}^{C} + A$
- Some unknown NP effect that violates Isospin.
- $\Rightarrow In combination with other K\pi measurements and$ with the larger Belle II dataset, strong interactioneffects can be controlled and the validity of theSM can be tested in a model-independent way.

$B \to K\pi$: Test of sum rule

Test-of-sum (isospin) rule for NP nearly free of theoretical uncertainties, where the SM can be tested by measuring all observables: [Proposed by: PLB 627, 82(2005), PRD 58, 036005(1998)]

$$I_{K\pi} = \mathcal{A}_{K^+\pi^-} + \mathcal{A}_{K^0\pi^+} \frac{\mathcal{B}(K^0\pi^+)}{\mathcal{B}(K^+\pi^-)} \frac{\tau_{B^0}}{\tau_{B^+}} - 2\mathcal{A}_{K^+\pi^0} \frac{\mathcal{B}(K^+\pi^0)}{\mathcal{B}(K^+\pi^-)} \frac{\tau_{B^0}}{\tau_{B^+}} - 2\mathcal{A}_{K^0\pi^0} \frac{\mathcal{B}(K^0\pi^0)}{\mathcal{B}(K^+\pi^-)} I_{K\pi} = -0.270 \pm 0.132 \pm 0.060 \quad (1.9\sigma)$$

Isospin sum rule can be presented as a band in the $\mathcal{A}_{K^0\pi^0}$ vs. $\mathcal{A}_{K^0\pi^+}$ plane. *Current data* Belle II $\mathcal{L} = 50 \text{ab}^{-1}$

→ Most demanding measurement is $K^0\pi^0$ final state. With Belle II, the uncertainty on $\mathcal{A}(B \to K^0\pi^0)$ from time-dep. analyses is expected to reach ~ 4% ⇒ Sufficient for NP studies.

Improvements in flavor tagging key to reducing

P. Goldenzweig

WA $(\Delta)A_{CP}$ results for $K^{(*)}\pi$ and $K^{(*)}\rho$

Extension to $K^*\pi$ and $K^{(*)}\rho$ systems.

(N)NLO calculations for $(\Delta)A_{CP}$ & isospin breaking parameter: PLB 750(2015)348-355

Uncertainty much improved in $K\pi$ but still too large in $K^*\pi$ and $K^{(*)}\rho$ systems to be conclusive.

High precision results from LHCb and Belle II necessary.

P. Goldenzweig

Belle II & correlation w/HL-LHC

31.10.2017 35 / 36

Belle T

DCPV in B_s Decays

First measurment of A_{CP} in B_s decays by LHCb: Phys. Rev. Lett. 110, 221601 (2013) $A_{CP}(B_s \to K^+\pi^-) =$ $0.27 \pm 0.04 \pm 0.01(6.5\sigma).$

Allows for a stringent test of

$$\Delta = \frac{A_{CP}(B^0 \to K^+ \pi^-)}{A_{CP}(B_s \to K^- \pi^+)} + \frac{A_{CP}(B^0 \to K^- \pi^+)\tau_d}{A_{CP}(B_s \to K^+ \pi^-)\tau_s}$$

$$= -0.02 \pm 0.05 \pm 0.04$$

No evidence for a deviation from 0 is observed.

At e^+e^- , $\Upsilon(5S)$ decays are well-suited for studying large multiplicity B_s decays due to the lower particle momenta, the almost 100% trigger ε , and the excellent π/K separation.

First observation of $B_s \to K^0 \overline{K}^0$ by Belle with 121fb⁻¹: PRL 116, 161801 (2016)

