DARK SECTOR PHYSICS WITH BELLE II

JULY 06 2017, EPS, VENICE TORBEN FERBER (FERBER@PHYSICS.UBC.CA)

BELLE II AT SUPERKEKB: INTENSITY FRONTIER AT 10.58 GEV

BELLE II DETECTOR

Possible upgrade Electromagnetic Calorimeter (ECL): CsI(Tl), waveform sampling (barrel) Pure CsI + waveform sampling (endcaps)

upgrade

electron (7GeV)

> Beryllium beam pipe 2cm diameter

Vertex Detector: 2 layers DEPFET 4 layers DSSD

Central Drift Chamber (CDC): He(50%):C₂H₆(50%), Small cells, long lever arm, fast electronics K_L and muon detector (KLM): Resistive Plate Counter (barrel) Scintillator + WLSF + MPPC (endcaps)

Particle Identification (PID): Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (fwd)

> positron (4GeV)

Need to cope with much higher luminosity and beam backgrounds.

DARK SECTOR PHYSICS WITH BELLE II

BELLE II DETECTOR: ELECTROMAGNETIC CALORIMETER (ECL)

Effects of beam background:

- > Degrades energy resolution.
- > Radiation damage.
- > Pile-up and increased event size.
- > Physics background.

→ Upgrades of hardware (detector) and software (reconstruction) are crucial.

WHY BELLE II FOR DARK SECTOR SEARCHES?

Belle II 2018 (``Phase 2''):

Low initial luminosity (like Belle), but trigger and computing can already handle 20×Belle rate: → Unique chance to use novel triggers for small datasets.

Belle II 2025:

Huge dataset of 50 ab⁻¹. (x50 Belle, x100 BaBar)

Belle II vs Belle:

New low multiplicity triggers.

Larger drift chamber.

Belle II vs BaBar:

Non-projective calorimeter (much more hermetic).

Better muon detector.

SEARCHING FOR DARK MATTER: VECTOR PORTAL

In the so called Vector Portal, a (massive) Dark Photon A can mix with the SM photon with strength ε.

SEARCHING FOR DARK MATTER: VECTOR PORTAL

- Search for a bump in the photon recoil mass spectrum.
- Main backgrounds: $ee \rightarrow ee\gamma$ and $ee \rightarrow \gamma\gamma(\gamma)$ with all but one γ undetected.

Trigger	YY	Bhabha both e have $\theta^* > 1^\circ$ one e has $\theta^* < 1^\circ$		Total
1 GeV* E*>1 GeV and second cluster E* < 0.2 GeV	0.2 nb	0.4 nb	1.6 nb	2.2 nb rate@1/40 lumi: 0.05 kHz rate@final lumi.: 1.76 kHz
2 GeV* E*>2 GeV and eclbhabhaveto and bhabhveto	0.5 nb	2.9 nb	0.1 nb	3.5 nb rate@1/40 lumi: 0.08 kHz rate@final lumi.: 2.80 kHz

SEARCHING FOR DARK PHOTONS AT BELLE II

SEARCHING FOR AXION LIKE PARTICLES

- Axion-like particles (ALPs) are pseudo-scalars and couple to bosons. Unlike Axions, ALPs have no relation between mass and coupling.
- They can be Dark Matter candidates, Dark Sector mediators, and they appear in many BSM scenarios.
- Focus on coupling to photons for Belle II.

SEARCH FOR AXION LIKE PARTICLES AT BELLE II

SEARCH FOR AXION LIKE PARTICLES

Trigger	Total (γγ)		
2 GeV* Barrel E*>2 GeV and polar angle in ECL barrel	1.7 nb rate@1/40 lumi: 0.03 kHz rate@final lumi.: 1.36 kHz		
2 GeV* ECL E*>2 GeV and polar angle in ECL trigger acceptance excluding extreme endcaps	2.8 nb rate@1/40 lumi: 0.06 kHz rate@final lumi.: 2.24 kHz		

- Focus on the resolved 3γ final state with $m_A ≥ 0.2$ GeV.
- Search for a bump in the two photon invariant mass spectrum.
- Main backgrounds:
 - ▶ ее→үүү
 - ▶ ee→үү + beam induced background photon
 - ee→үү (γ→ee) pair conversion outside tracking detectors.

SEARCH FOR AXION LIKE PARTICLES

ALP coupling to two photons only.

SUMMARY

- The early running of Belle II offers possibilities for unique physics analyses in the dark sector (including visible and displaced topologies not covered in this talk).
- The search for light dark matter is competitive with BaBar already with 2018 data due to the more hermetic calorimeter.
- Belle II Physics Book in preparation* (Belle II detector, simulation, software, analysis tools, physics program incl. dark sectors), to be submitted for publication in 2017.
- Belle II physics data taking starts April 2018. Full detector (including VXD) starts end of 2018.

BACKUP

BELLE II BEAM BACKGROUND

- Degrades calorimeter resolution.
- Radiation damage.
- Pile-up and event size.
- Physics background.

SEARCH FOR AXION LIKE PARTICLES

ALP coupling to two photons or Z bosons.

SINGLE PHOTON TRIGGERS

Trigger	ΥY	Bhabha both e have $\theta^* > 1^\circ$ one e has $\theta^* < 1^\circ$		Total
1 GeV* E*>1 GeV and second cluster E* < 0.2 GeV	0.2 nb	0.4 nb	1.6 nb	2.2 nb rate@1/40 lumi: 0.05 kHz rate@final lumi.: 1.76 kHz
2 GeV* E*>2 GeV and eclbhabhaveto and bhabhveto	0.5 nb	2.9 nb	0.1 nb	3.5 nb rate@1/40 lumi: 0.08 kHz rate@final lumi.: 2.80 kHz

ALP TRIGGERS

Trigger	Total (үү)		
2 GeV* Barrel E*>2 GeV and polar angle in ECL barrel	1.7 nb rate@1/40 lumi: 0.03 kHz rate@final lumi.: 1.36 kHz		
2 GeV* ECL E*>2 GeV and polar angle in ECL trigger acceptance excluding extreme endcaps	2.8 nb rate@1/40 lumi: 0.06 kHz rate@final lumi.: 2.24 kHz		