SuperKEKB & Belle II Status

Riccardo de Sangro INFN - Laboratori Nazionali Frascati for the Belle II Collaboration

FPCP 2017 - Prague, 4-9 June 2017

Outline

- Introduction
- Commissioning status and plans
 - SuperKEKB accelerator
 - Belle II detector
- Outlook

The B Factory Legacy

Next Generation SuperKEKB+ Belle II with 50 ab⁻¹ Discover new physics!

3

R. de Sangro (LNF-INFN)

June 5-9, 2017

FCPC 2017 - Prague, Czech Republic

Luminosity profile of the next generation B factory @ KEK

Expected data sample @ full luminosity							
Channel	Belle	BaBar	Belle II (per year)*				
$B\bar{B}$	7.7×10^8	4.8×10^8	1.1×10^{10}				
$B_s^{(*)}\bar{B}_s^{(*)}$	$7.0 imes 10^6$	_	$6.0 imes 10^8$				
$\Upsilon(1S)$	1.0×10^8		1.8×10^{11}				
$\Upsilon(2S)$	1.7×10^8	$0.9 imes 10^7$	$7.0 imes10^{10}$				
$\Upsilon(3S)$	1.0×10^7	$1.0 imes 10^8$	$3.7 imes 10^{10}$				
$\Upsilon(5S)$	3.6×10^7	_	3.0×10^9				
au au	1.0×10^{9}	0.6×10^9	$1.0 imes 10^{10}$				

fragmeing 100% running at each energy

- 20 days/month

4

R. de Sangro (LNF-INFN)

Belle II

2000

2002

3.85 years

2004

2006

year

2008

$2 \cdot 10^{34} \rightarrow 8 \cdot 10^{35}$

Belle II

The "nano-beam scheme"

Very focused beams, large crossing angle (83 mrad)

KEK & SuperKEKB parameters

	KEKB Design	KEKB Achieved : with crab	SuperKEKB Nano-Beam
Energy (GeV) (LER/HER)	3.5/8.0	3.5/8.0	4.0/7.0
β_{y}^{*} (mm)	10/10	5.9/5.9	0.27/0.30
β_x^* (mm)	330/330	1200/1200	32/25
ε _x (nm)	18/18	18/24	3.2/5.3
$\epsilon_{y}/\epsilon_{x}$ (%)	1	0.85/0.64	0.27/0.24
σ _y (μm)	1.9	0.94	0.048/0.062
ξγ	0.052	0.129/0.090	0.09/0.081
$\sigma_{z}(mm)$	4	6 - 7	6/5
I _{beam} (A)	2.6/1.1	1.64/1.19	3.6/2.6
N _{bunches}	5000	1584	2500
Luminosity (10 ³⁴ cm ⁻² s ⁻¹)	1	2.11	80

• Lower E_{HER} (RF power)

• Higher E_{LER} (Touschek lifetime)

Boost $0.42 \rightarrow 0.28$

From KEKB to SuperKEKB

U

8

Belle II

SuperKEKB Commissioning

Phase I (2016): No Belle II, circulate both beams without collisions

Phase II (2018): With Belle II without vertex detector, first collisions

SuperKEKB Commissioning Goals **Belle II**

- Clean beam pipe (vacuum scrubbing)
- Real-time monitoring of beam conditions
- Tune accelerator optics, collimators etc.
- Isolate sources of beam loss and collect data for simulations used to improve performances

- Guarantee a safe operating environment for Belle II
- Mitigate beam backgrounds around the IP
- Test beam abort system based on diamond sensors
- Collect beam background data to validate background simulations

BEAST II - phase 1

Beam Exorcisms for A Stable Belle II Experiment

Goals

Supe,

commissioning

BEAST

- Measure BG levels near IP
 - X-rays, charged tracks, neutrons
 - online feedback to SuperKEKB
 - offline for analysis
- Test and calibration of diamond sensor VXD beam abort
- First measurements of SuperKEKB injection backgrounds
- First comparison of SuperKEKB beam-loss simulation with experimental data

Expected SuperKEKB Backgrounds

Phase | (no collisions)

Touschek scattering:

- intra-bunch scattering process
- dominant with highly compressed beams
- 20 times higher

Beam-gas scattering:

 Bremsstrahlung (negligible) &
 Coulomb interactions (up to 100 times higher) with
 residual gas atoms &
 molecules

Synchrotron radiation:

- emission of photons
 by charged particles
 (e⁺e⁻) when
 - deflected in B-field

Phase 2 (collisions)

Radiative Bhabha process:

photon emission prior or after Bhabha scattering interaction with iron in the magnets leads to neutron background

Two photon process:

- very low momentum e⁺e⁻ pairs via e⁺e⁻—>e⁺e⁻e⁺e⁻
- increased hit occupancy in inner detectors

Injection Background:

covered later in the talk

History of Phase 1 operation

June 21: LER beam current exceeded 1 Ampere

• All upgraded components worked fine!

June 5-9, 2017

Beam "Scrubbing"

BEAST II - Phase 1

Cleaning a new beam pipe

- A key goal of phase 1 was to "scrub" the beam pipes
 - High currents stimulate desorption of impurities from beam pipe walls
 - Over time, **vacuum improves** lowering beam-gas backgrounds
- BEAST quantified distinct improvements in beam-gas in phase 1

Beam-Gas & Touschek

- Size-sweep scans
- Run beam at 5 different beam sizes and at 3 currents (15 runs total)
- Observable comes from BGO crystals
- Rewrite so beam-gas is flat:

 $\frac{Observable}{IPZ_e^2} = B + T \cdot \frac{I}{PZ_e^2 \sigma_y}$

- Quality of linear fit validates model
- Fit measures sensitivities B (offset) and T (slope)

 Z_e : An "effective" atomic number taking into account the gas mixture recorded by a residual gas analyzer

Good agreement with the model!

The comparison of data with MC is underway

Injection Background BEAST II - Phase 1

- Injection produces high backgrounds
 - Factory mode: to compensate for shorter beam lifetime use continuous injection → DAQ Veto
- Continuos injection @ 100 Hz during SuperKEKB-factory operation
 - Belle injection ECL DAQ veto scheme would produce 35% dead time!
 - → Study injection background time structure with BEAST crystal, CLAWS and scintillators subsystems
- Background surge ~x100-x1000 in first ms after injection

Injection Background BEAST II - Phase 1

- Injection perturbs the orbit parameters of (almost) only the injected bunch
 - → High backgrounds lasting few ms after injection are highly correlated in time with the injected bunch
- Veto for ~1ms only for few 10s of ns around the time of passage of the injected bunch through the IP → dead time ok

Belle II Detector

Belle II Detector [735 collaborators, 101 institutes, 23 nations]

R. de Sangro (LNF-INFN)

Belle II Detector

Factor x40 luminosity also brings in:

- Higher occupancy, pile-up, fake hits
- increased trigger and DAQ rates
- radiation damage

Upgrade the Belle detector

- starting point is the Belle detector
- in practice, reuse the crystal CsI(Tl) calorimeter, the solenoid, the KLM barrel detector

Improvements over Belle

- Fast signal shaping and waveform fit of e.m. calorimeter signals to preserve excellent energy resolution in highpileup environment
- Increase K_S efficiency (by ~30%)
- Improve IP and secondary vertex resolution (~factor 2)
- Better K/π separation (π fake rate decreases by ~2.5)
- Improve π^0 reconstruction

The tracking system

Gamma	m	OC	Declarat	D
Component	Type	Configuration	Readout	Performance
Beam pipe	Beryllium	Cylindrical, inner radius 10 mm,		
	double-wall	$10 \ \mu m$ Au, 0.6 mm Be,		
		1 mm coolant (paraffin), 0.4 mm Be		
PXD	Silicon pixel	Sensor size: 15×100 (120) mm ²	10 M	impact parameter resolution
	(DEPFET)	pixel size: 50×50 (75) μm^2		$\sigma_{z_0}\sim 20~\mu{ m m}$
		2 layers: 8 (12) sensors		(PXD and SVD)
SVD	Double sided	Sensors: rectangular and trapezoidal	245 k	
	Silicon strip	Strip pitch: $50(p)/160(n) - 75(p)/240(n) \ \mu m$		
		4 layers: 16/30/56/85 sensors		
CDC	Small cell	56 layers, 32 axial, 24 stereo	14 k	$\sigma_{r\phi}=100~\mu{ m m},\sigma_z=2~{ m mm}$
	drift chamber	r = 16 - 112 cm		$\sigma_{p_t}/p_t = \sqrt{(0.2\% p_t)^2 + (0.3\%/\beta)^2}$
		$-83 \le z \le 159 \text{ cm}$		$\sigma_{p_t}/p_t = \sqrt{(0.1\% p_t)^2 + (0.3\%/\beta)^2}$ (with SVD)
Belle II				lstituto Na di Fisica N

R. de Sangro (LNF-INFN)

June 5-9, 2017

FCPC 2017 - Prague, Czech Republic

Combined PXD+SVD beam test at DESY

Improvements of vertex detector

- Extrapolations of detector performance confirmed after beam-test results, and realistic software implementation
- Currently, in spite of

$$\langle \beta \gamma \rangle^{\text{Belle II}} = 28/44 \cdot \langle \beta \gamma \rangle^{\text{Belle}}$$

$$\sigma_{\Delta_t}^{\text{Belle II}} \sim \frac{3}{4} \sigma_{\Delta t}^{\text{Belle}}$$

See also Jaku

See also Jakub Kandra poster on Belle II PXD+SVD alignment

June 5-9, 2017

 $30 \text{um} \Phi \text{Au-W}$ sense wire (14336)

sma

Axial wire Stereo wire 60-80 mrad

26um Φ (no-plated) Al field wire (42

 \bigcirc

0 0

Belle

Belle-I

00000

0 0 0 0 0

The Central Drift Chamber (CDC)

cosmic ray

- Installed on Oct, 2016
- Commissioning with cosmic raw tracks is ongoing

Barrel PID: Time Of Propagation

Cherenkov ring imaging with precision time measurement (better than 100ps)

Installation completed! 2016, May 11

Quartz Property	Requirement
Flatness	<6.3µm
Perpendicularity	<20 arcsec
Parallelism	<4 arcsec
Roughness	< 0.5nm (RMS)
Bulk transmittance	> 98%/m
Surface reflectance	>99.9%/reflection

R. de Sangro (LNF-INFN)

Forward PID: the Aerogel RICH

Use two aerogel layers in focusing configuration to increase n. of photons without resolution degradation

HAPD – Hybrid Avalanche Photo-Detector

- Developed in collaboration with Hamamatsu photonics
- 1.5 T n,γ tolerance ($10^{12} n/cm^2$) - Basic requirements:

FN

3.5 Momentum [GeV]

ARICH Rings from cosmic ray muons

• First events from CR tracks recorded in a partially instrumented sector of the ARICH

- Production of aerogel tiles and HAPDs is finished.
- Installation on the structure complete!

 Install in Belle II in September.

R. de Sangro (LNF-INFN)

E.M. Calorimeter (ECL)

ECL commissioning

BWD endcap installation January 2017

• Barrel ECL under CR test since 2015 Endcap calorimeter CR test ongoing

Combined CDC-ECL cosmic ray test

Barrel

Endcaps

Entries

Std Dev

Std Dev

-200

Entrip

Moar

The KLong and Muon detector KLM

- 14 iron layers 4.7cm thick
- 15 barrel active layers
 - ✓ 2 x [scintillator strips + WLS + SiPM] \leftarrow **NEW** $|_{\text{Side}}^{\text{Nikko}}$
 - ✓ 13 x [double glass RPC + 5 cm orthogonal phi, z strips]
- 14 endcap active layers -
 - ✓ 14 x [scintillator strips + WLS + SiPM] ← NEW

- All endcap glass RPC + 2 in the innermost layers of the barrel replaced with scintillator strips to resist higher backgrounds
- Installation is complete
- Commissioning with cosmic rays ongoing

28

I N F N

Belle II Roll In

April 11th Belle II Milestone!

INTERNATIONAL JOURNAL OF HIGH-ENERGY PHYSICS CERRICOURNAL OF HIGH-ENERGY PHYSICS

NUMBER 5

VOLU

The Belle Tsukuba, Japan, with Is to those of the LHCb N but in the pristing ntities of B nd signs

> KB and all it or the innermost vertex The next step is to

Belle II rolls in

, the Belle II dete

Final focus magnets

Superconducting quadrupole magnets with 30+25 coils

The second one delivered on Feb 13

World's most complex SC final focus!

30

R. de Sangro (LNF-INFN)

When do we start Belle II ?

- Phase II Operation: *Starts in Nov 2017*
 - Begin with damping ring commissioning
 - Main ring (Feb 2018): first collisions!
 - Two main goals:

- SuperKEKB luminosity with nano-beams reach KEKB maximum luminosity at the end of phase 2.
- Ensure background levels are compatible with the operation of the vertex detector
- Limited physics without vertex detectors
- Phase III: *Starts late 2018*
 - Belle II Physics Running (with vertex detectors in)

Outlook

- Phase 1 of the SuperKEKB commissioning successfully completed in 2016, with BEAST II commissioning detector on the beam line
 - Background characterisation, including during injection
- Belle II rolled in on April 11th !
- June 2017 B-field measurement, start global cosmic ray run
- **Sep 2017** Installation of A-RICH and forward ECL
- Nov 2017 Spring 2018: Phase 2 commissioning (+ first Physics runs, without vertex detector)
- Summer 2018 Install vertex detectors
- Late 2018 full detector operation Start of Physics runs

Thank you!

Backup

33

R. de Sangro (LNF-INFN)

SuperKEKB/Belle II schedule

INFN

SuperKEKB: Preparations for Phase 2 Commissioning

R. de Sangro (LNF-INFN)

June 5-9, 2017

BEAST II - Phase 2

The volume left empty by the vertex detector will be filled by BEAST - Phase 2

Commissioning phase 2 (~5 months)

- Machine condition
 - w/ QCS, w/ Belle II (w/o VXD), full accelerator tuning
- Tuning items

Optics tuning

- Tentative target values of IP beta's: β_x^* : x4, β_y^* : x8
- Optics tuning with QCS and Belle II solenoid
- Low emittance tuning w/ Belle II solenoid
- Optics tuning w/ beam collision
- Detector beam background
 - Study with Belle II detector, test of continuous injection (BEAST)
- Beam collision tuning
 - Orbit feedback (fast feedback, dithering system)
 - Collision tuning w/ "Nano-Beam" scheme
- Luminosity tuning
 - Tuning knobs (x-y coupling at IP etc.)
 - Tentave target luminosity: 1 x 10³⁴ cm⁻² s⁻¹ (design of KEKB)
- Increase of beam currents (instability, RF power, vacuum issues)
 - Detector background may possibly give some restriction.
 - Continue upgrade for RF system (support ~70% of design beam currents)

R. de Sangro (LNF-INFN)

Phase 2 VXD Volume

se 1

Injection Background

Single bunch injection CsI crystals

Double bunch injection LYSO crystals

BEAST II - Phase 1

commissioning

BEAST II

etecto

Superkete

Simulated Background Rates in Belle 2

Table 22: Beam background types (12th background campaign).

type	source	rate [MHz]	Total	rates from sim	ulation	
radiative Bhabha	HER	1320				
radiative Bhabha	LER	1294				
radiative Bhabha (wide angle)	HER	40	Total nun	nber of hits pe	r event in	
radiative Bhabha (wide angle)	LER	85	each sub-detector			
Touschek scattering	HER	31	cach sub			
Touschek scattering	LER	-83		•		
beam-gas interactions	HER	1	component	haderround	\overline{P}	
beam-gas interactions	LER	156	component	Dackground	generic DD	
two-photon QED	_	206	$\mathbf{P}\mathbf{X}\mathbf{D}$	10000 (580) *	23	
			SVD	$284\ (134)$	108	
			CDC	654	810	
Background	lS		TOP	150	205	
$\frac{1}{2}$ $\frac{1}$			ARICH	191	188	
αις ~ λζυ D	CIIC		ECL	3470	510	
			BKLM	484	33	
			EKLM	142	34	
			* in parentheses num	bers without 2-γ QED		

Belle II

Computing Model

NFN

Grid MC production

Tota	ls		8	150%	6	
		TO	TAL			3.41E+10
×		4S h	adronic			2.41E+10
Subt	otals	Rare	e 4S			8.25E+08
		Btag	l skim			2.75E+09
		3S	23	144%	6	6.00E+08
*		5S				0.00E+00
		Tau	pairs			4.60E+09
ster		Low	Multiplic	ity		1.21E+09
SLED						

First attempts of distributed analysis on the Grid.

0%

B-field measurement

Phase II Unique data sets

Only ~20-40 fb⁻¹ in Phase II

- Unique E_{CM}, e.g. Y(6S) for bottomonium - strong interaction studies
- New trigger menu to greatly enhance low multiplicity & dark sector physics

Experiment	Scans	$\Upsilon(6S)$	γ	$\hat{S}(5S)$	$\Upsilon(4)$	(4S)	$\gamma(3$	(SS)	$\Upsilon(2$	(S)	$\Upsilon(1$	(S)
	Off. Res.	fb^{-1}	b^{-}	$1 10^{6}$	fb^{-1}	10^{6}	fb^{-1}	10^{6}	fb^{-1}	10^{6}	fb^{-1}	10^{6}
CLEO	17.1	-	0.1	0.4	16	17.1	1.2	5	1.2	10	1.2	21
BaBar	54	R_b	, sca	n	433	471	30	122	14	99	_	
Belle	100	~ 5.5	/ 36	121	711	772	3	12	25	158	6	102
	1											

Triggering dark sector physics

	Hardware Trigger accept	Physics output rate	Raw event size
Belle	500 Hz	90 Hz	
Belle II	30 kHz	3-10kHz	~200 kB
ATLAS	100 kHz	1 kHz	1.6MB

Physics process	Cross section (nb)	Rate (Hz)			
$\Upsilon(4S) \to B\bar{B}$	1.2	960			
$e^+e^- \rightarrow \text{continuum}$	2.8	2200			
$\mu^+\mu^-$	0.8	640			
$\tau^+ \tau^-$	0.8	640			
Bhabha ($\theta_{\text{lab}} \ge 17^{\circ}$)	44	350 a			
$\gamma\gamma~(\theta_{\rm lab} \ge 17^\circ)$	2.4	19 ^a			
2γ processes b	~ 80	~ 15000			
Total	~ 130	~ 20000			
a The rate is pre-scaled by a factor of 1/100.					

^b $\theta_{\text{lab}} \ge 17^{\circ}, p_t \ge 0.1 \text{GeV}/c$

Phillip URQUIJO