BeleinStatus

Beyond the LHCb Phase-Upgrade workshop 29-05–2017 *G. Finocchiaro*

INFN Istituto Nazionale di Fisica Nucleare

LABORATORI NAZIONALI DI FRASCATI

Outline

- Introduction
- Status of SuperKEKB
- Status of Belle II detector construction
- Commissioning status and plans

The mission of Belle II

In a nutshell: discover New Physics

- SM supported by all experimental evidence at the current level of precision and energies
 - although discrepancies, or "tensions" do exist

- However, the SM does not explain several fundamental questions
 - hierarchy of fermion masses, n. of generations, neutrino masses, matter-antimatter asymmetry, hierarchy of CKM matrix elements

Several (NP) scenarios, with new particles and interactions, which can be investigated at the "energy" or at the "intensity" frontier.

The B factory heritage

Past, present, and future

Past, present, and future

2016, 1.5 ab⁻¹

Tevatron and LHCb also included

Past, present, and future

Tevatron and LHCb also included

Luminosity profile of the next generation B factory @ KEK

Channel	Belle	BaBar	Belle II (per year)*
$B\overline{B}$	7.7×10^8	4.8×10^8	1.1×10^{10}
$B_s^{(*)} \overline{B}_s^{(*)}$	$7.0 imes 10^6$	_	$6.0 imes 10^8$
$\Upsilon(1S)$	1.0×10^8		$1.8 imes 10^{11}$
$\Upsilon(2S)$	1.7×10^8	$0.9 imes 10^7$	$7.0 imes 10^{10}$
$\Upsilon(3S)$	1.0×10^7	$1.0 imes 10^8$	$3.7 imes 10^{10}$
$\Upsilon(5S)$	$3.6 imes 10^7$	_	$3.0 imes 10^9$
ττ	1.0×10^9	$0.6 imes 10^9$	$1.0 imes 10^{10}$

- Assumptions:
 - same commissioning time to reach nominal luminosity as in KEKB
 - 9 months/year running
- All RF cavities in place

Complementarity/competition of Belle II with the LHCb Physics program

BELLE2-NOTE-PH-2015-004 Version 5.0 May 28, 2017

x 40!

HowTo

Luminosity formula

 $L = f_{coll} \times \frac{N^+ N^-}{4\pi\sigma_x \sigma_y}$

HowTo $L = f_{coll} \times \frac{N^+ N^-}{4\pi\sigma_x \sigma_y}$ Luminosity formula Beam-Beam parameter Lorentz factor Beam current Geometrical reduction factors R_L σ (crossing angle, $L = \underline{\gamma_{\pm}}$ $v\pm$ у hourglass effect) * R_e $2er_{e}$ (0.8-1.0) σ Vertical beta function at IP Beam aspect ratio at IP (0.01 - 0.02)

HowTo

"nano-beam" scheme, first proposed in the *SuperB* design (although eventually it was not applied there)

HowTo

"nano-beam" scheme, first proposed in the *SuperB* design (although eventually it was not applied there)

Very focused beams, large crossing angle: 83 mrad

KEK & SuperKEKB parameters

	KEKB Design	KEKB Achieved : with crab	SuperKEKB Nano-Beam
Energy (GeV) (LER/HER)	3.5/8.0	3.5/8.0	4.0/7.0
β _y * (mm)	10/10	5.9/5.9	0.27/0.30
β_x^* (mm)	330/330	1200/1200	32/25
ε _x (nm)	18/18	18/24	3.2/5.3
$\epsilon_{y}^{}/\epsilon_{x}^{}$ (%)	1	0.85/0.64	0.27/0.24
σ _y (μm)	1.9	0.94	0.048/0.062
ξγ	0.052	0.129/0.090	0.09/0.081
σ_{z} (mm)	4	6 - 7	6/5
I _{beam} (A)	2.6/1.1	1.64/1.19	3.6/2.6
N _{bunches}	5000	1584	2500
Luminosity (10 ³⁴ cm ⁻² s ⁻¹)	1	2.11	80
NI 1		a a second a second de la seconda de la s	

Note:

- Lower E_{HER} (RF power, low emittance)
- Higher ELER (Touschek lifetime, low emittance)
- boost 0.42 -> 0.28

Transform KEKB into SuperKEKB

SuperKEKB Commissioning

Phase I (2016)

• Circulate both beams, no collisions. Tune accelerator optics, etc. Vacuum scrub. Beam studies. No Belle II.

Phase II (2018)

 First collisions. Develop beam abort. Tune accelerator optics, etc. (nano-beam). Beam studies. Belle II (w/o vertex detectors).

Commissioning Requirements

SuperKEKB

- Real-time monitoring of beam conditions
- Quantify effects of tuning, collimators, etc., on beam loss
- Isolate the type and source of beam loss
- Inform beam loss simulations to optimise performance

Belle II

- Guarantee a safe-enough radiation environment for Belle II
- Mitigate beam backgrounds (with physical shielding, electronic gating, magnet tuning, etc.) around IP
- Inform beam background simulations so they are properly accounted for in physics analysis

BEAST II - phase 1

Beam Exorcisms for A Stable Belle II Experiment

Detector Systems

System	Detectors Installed	Unique Measurement
PIN Diodes	64/64	Neutral vs charged radiation dose
Diamonds	4/4	ionizing radiation dose
Micro-TPCs	2/2	fast neutron flux++
He-3 tubes	4/4	thermal neutron flux
Crystals	6/6 CsI(TI) 6/6 CsI 6/6/ LYSO	EM energy spectrum
BGO	8/8	luminosity
"CLAWS" Scintillator	8/8	Injection backgrounds

Expected SuperKEKB Backgrounds

Phase I (no collisions)

Touschek scattering:

- intra-bunch scattering process
- dominant with highly compressed beams
- 20 times higher

Beam-gas scattering:

 Bremsstrahlung (negligible) & Coulomb interactions (up to 100 times higher) with residual gas atoms & molecules

Synchrotron radiation:

 emission of photons by charged particles (e⁺e⁻) when deflected in *B*-field

Phase 2 (collisions)

Radiative Bhabha process:

photon emission prior or after Bhabha scattering interaction with iron in the magnets leads to neutron background

Two photon process:

- very low momentum e⁺e⁻ pairs via e⁺e⁻->e⁺e⁻e⁺e⁻
- increased hit occupancy in inner detectors

Injection Background:

covered later in the talk

Testing background heuristic model

Beam-Gas & Touschek

- Size-sweep (5 runs) and current (3 runs) scan
- Observable comes from BGO crystals
- Rewrite so beam-gas is flat:

$$\frac{Observable}{IPZ_e^2} = B + T \cdot \frac{I}{PZ_e^2\sigma_y}$$

- Quality of linear fit validates model
- Fit measures sensitivities B (offset) and T (slope)

Good agreement with the model!

However, MC and data do not agree (yet) when comparing different detector data. We understand some of the disagreements, but not all of it. This is good, it proves we needed BEAST!

Ongoing work to refine our understanding of SuperKEKB, BEAST and simulation for phase II

Beam scrubbing in phase1

Cleaning a new beam pipe

- A key goal of phase 1 was to "scrub" the beam pipes
 - High currents stimulate desorption of impurities from beam pipe walls
 - Over time, vacuum improves lowering beam-gas backgrounds
- BEAST quantified distinct improvements in beam-gas in phase 1
- Scrubbing not yet at final physics run quality

SuperKEKB measurements of dP/dI vs integrated current

BEAST measurements of Rates/I² vs integrated current

BEAST II - Phase 1: injection background

LER 1000mA達成!!!

June 21, 2016: LER beam current exceeded 1 Ampere

Startup of SuperKEKB (3 months)

- Much faster startup than KEKB
 - KEKB beam currents achieved after first 3 months
 - LER: ~300mA, HER: ~200mA (540mA, 300mA: 4 months)
 - SuperKEKB beam currents achieved after first 3 months
 - LER: ~650mA, HER: ~590mA (820mA, 740mA: 4 months)
- Compared with KEKB...
 - Each hardware component has been upgraded with experiences at KEK and has worked fine (RF, Magnet, Vacuum...)
 - The bunch-by-bunch feedback system has more effectively suppressed instabilities.
 - Operational tools (such as closed orbit correction system) has worked fine based on experiences at KEKB.
 - Less machine troubles than KEKB so far

Y. Funakoshi, June '16 B2GM

Belle II detector upgrade

Background increase x factor 10–20

Factor x40 luminosity also brings in:

- Higher occupancy, pile-up, fake hits
- increased trigger and DAQ rates
- radiation damage

Upgrade the detector

- starting point is the Belle detector
- in practice, reuse the crystal CsI(TI) calorimeter, the solenoid, the KLM barrel detector

Table 22: Beam background types (12th background campaign).

			Total	rates from simi	ulation
type	source	rate [MHz]		races from sim	ulution
radiative Bhabha	HER	1320			
radiative Bhabha	LER	1294	- m + 1	1 61.11	
radiative Bhabha (wide angle)	HER	40	1 Iotal num	ber of hits per e	event in each
radiative Bhabha (wide angle)	LER	85	sub-detec	tor	
Touschek scattering	HER	31		1	
Touschek scattering	LER	83			
beam-gas interactions	HER	1	component	background	generic $B\overline{B}$
beam-gas interactions	LER	156	PXD	10000 (580)*	23
two-photon QED	- "	206	GUD	10000 (000)4	100
			SVD	284(134)	108
_	_		CDC	654	810
Backgrounds			TOP	150	205
are ~ x20 Belle		ARICH	191	188	
			ECL	3470	510
			BKLM	484	33
			EKLM	142	34

* in parentheses numbers without 2-γ QED

Belle II detector upgrade

Belle II 測定器

- Fast signal shaping and waveform fit of e.m. calorimeter signals to preserve excellent energy resolution in high-pileup environment
- Increase K_S efficiency by ~30%)
- Improve IP and secondary vertex resolution (~factor 2)
- Better K/π separation (π fake rate decreases by ~2.5)
- Improve π^0 reconstruction

In the end, a better detector than Belle, in a harsher environment

Reduced boost (0.44 \rightarrow 0.28) yields better hermeticity for rare searches

Highlights of Belle II construction and commissioning

The tracking system

Component	Type	Configuration Readout		Performance
Beam pipe	Beryllium	Cylindrical, inner radius 10 mm,		
	double-wall	$10 \ \mu m$ Au, 0.6 mm Be,	$10 \ \mu m$ Au, 0.6 mm Be,	
		1 mm coolant (paraffin), 0.4 mm Be		
PXD	Silicon pixel	Sensor size: 15×100 (120) mm ²	10 M	impact parameter resolution
	(DEPFET)	pixel size: 50×50 (75) μm^2		$\sigma_{z_0}\sim 20~\mu{ m m}$
		2 layers: 8 (12) sensors		(PXD and SVD)
SVD	Double sided	Sensors: rectangular and trapezoidal	Sensors: rectangular and trapezoidal 245 k	
	Silicon strip	Strip pitch: $50(p)/160(n) - 75(p)/240(n) \mu m$		
		4 layers: 16/30/56/85 sensors		
CDC	Small cell	56 layers, 32 axial, 24 stereo	14 k	$\sigma_{r\phi}=100~\mu{ m m},\sigma_z=2~{ m mm}$
	drift chamber	r = 16 - 112 cm		$\sigma_{p_t}/p_t = \sqrt{(0.2\% p_t)^2 + (0.3\%/eta)^2}$
		$-83 \le z \le 159 \text{ cm}$		$\sigma_{p_t}/p_t = \sqrt{(0.1\% p_t)^2 + (0.3\%/\beta)^2}$ (with SVD)

Combined PXD+SVD beam test at DESY

Measure efficiency and resolution, test Region Of Interest PXD readout scheme on • HLT module (online!), test new track-finding algorithm

Improvements of vertex detector

intervencing of renew accord

- Extrapolations of detector performance confirmer after beam-test results, and realistic software implementation
- Currently, in spite of $\langle \beta \gamma \rangle^{\text{Belle II}} = 28/44 \cdot \langle \beta \gamma \rangle^{\text{Belle}}$

 $\sigma^{\rm Belle~II}_{\Delta t}\sim \frac{3}{4}\sigma^{\rm Belle}_{\Delta t}$

The Central Drift Chamber (CDC)

- Installed Oct, 2016
- Commissioning with cosmic ray tracks is ongoing

Electromagnetic calorimeter (ECL)

Belle calorimeter: 8736 CsI(Tl) crystals 6624 Barrel 1152 Fwd Endcap 960 Bwd Endcap

- High rates (machine+physics) \Rightarrow upgrade of electronics
 - shorter signal shaping (1µs —> 500ns)
 - the waveform is sampled (~2MHz)
 - waveform fit to extract signal time and amplitude

ECL commissioning

Jan 2017 BWD endcap installation

Barrel ECL under CR test since 2015 Endcap calorimeter CR test ongoing

CDC-ECL cosmic ray test

Barrel PID: Time Of Propagation (TOP)

Cherenkov ring imaging with precision time measurement (better than 100ps)

Installation completed! 2016, May 11

Quartz Property	Requirement
Flatness	<6.3µm
Perpendicularity	<20 arcsec
Parallelism	<4 arcsec
Roughness	< 0.5nm (RMS)
Bulk transmittance	> 98%/m
Surface reflectance	>99.9%/reflection

TOP: running the installed detector

Gain operational experience in 1.5 T B-field !

- Issue with PMTs discovered: PMT-MCPs use a magnetic Kovar (Cobalt-Nickel alloy)... and move with the B-field on!
- Repair to main issue completed (added shims between PMT and FE board to push PMTs in place).
- result of GEANT4 simulation of air gaps (different thickness) between quartz and PMT inserted in Belle II reconstruction for different fractions of affected PMTs ==> Effect on pion or K mis-id/efficiency very small
- Cause delay on global installation schedule
- High statistics laser/cosmic running for all modules with stable ASIC configuration completed, both with and without B-field to understand performance differences
- Significant progress on firmware, including the crucial feature extraction

Forward PID: the Aerogel RICH

 Use two aerogel layers in focusing configuration to increase n. of photons without resolution degradation

HAPD – Hybrid Avalanche Photo-Detector

- Developed in collaboration with Hamamatsu photonics
- Basic requirements: 1.5 T n_{max} tolerance ($10^{12} n/\text{cm}^2$)
- position resolution
- large coverage (3.5 m²)

ARICH Rings from cosmic ray muons

First events from CR tracks recorded in a partially instrumented sector of the ARICH

Production of aerogel tiles and HAPDs is finished. Expect to complete installation on the structure before July, and install in Belle II in September.

The KLong a Muon detector KLM

- 14 iron layers 4.7cm thick
- 15 barrel active layers
 - ✓ 2 x [scintillator strips + WLS + SiPM] ← NEW
 - ✓ 13 x [double glass RPC + 5 cm orthogonal phi, z strips]
- 14 endcap active layers
 - ✓ 14 x [scintillator strips + WLS + SiPM] ← NEW
- All endcap active layers + 2 innermost layers in barrel replaced with scintillator strips to resist neutron background
- Installation is complete
- Commissioning with cosmic rays ongoing

Barrel KLM commissioning

CR track fitted independently in the two sectors

Readout on all octants will be installed and commissioned by the Summer

Roma CSN1 - Bellell

SuperKEKB: Preparations for Phase 2 Commissioning

Final focus magnets

Superconducting quadrupole magnets with 30+25 coils

The second one delivered on Feb 13

World's most complex SC final focus!

April 11, 2017 - Belle II Milestone!

INTERNATIONAL JOURNAL OF HIGH-ENERGY PHYSICS

CERNCOURTER

VOLUME 57 NUMBER 5 JUNE 2017

The Belle II detector is now in place SuperKEKB facility in Japan.

Belle II rolls in

On 11 April, the Belle II detector at the KEK laboratory in Japan was successfully "rolled-in" to the collision point of the uneu-m wine comsion point of the upgraded SuperKEKB accelerator, marking an important milestone for the international B-physics community. The Belle II experiment is an international collaboration hosted by KEK in Tsukuba, Japan, with related physics goals to those of the LHCb experiment at CERN but in the pristine environment of electron-positron collisions. It will analyse copious quantities of B n with analyse copious quantities of b mesons to study CP violation and signs of physics beyond the Standard Model (CERN

Courier September 2016 p32). "Roll-in" involves moving the entire 8 m-tall, 1400 tonne Belle II detector system

ourtain, 1400 unine Dene n detector system from its assembly area to the beam-collision point 13 m away. The detector is now point to maway. The detector is now integrated with SuperKEKB and all its seven subdetectors, except for the innermost vertex detector, are in place. The next step is to

install the complex focusing magnets around the Belle II interaction point. SuperKEKB achieved its first turns in February, with operation of the main rings scheduled for operation of the main tings scheduled for early spring and phase-II "physics" operation

Compared to the previous Belle by the end of 2018. experiment, and thanks to major upgrades made to the former KEKB collider, Belle II will allow much larger data samples to be

collected with much improved precision. "After six years of gruelling work with many unexpected twists and turns, it was a moving and gratifying experience for everyone on the team to watch the Belle II detector move to the interaction point," says Belle II spokesperson Tom Browder. "Flavour physics is now the focus of much attention and interest in the community and Belle II will play a critical role in the years to come."

Extra! Extra!

So, when do we start Belle II ?

So, when do we start Belle II ?

WHAT'S NEXT:

- June 2017: B-field measurement, global cosmic ray run
- September 2017: ARICH and forward ECL (+ commissioning vertex detector) installation
- Nov 2017 Spring 2018: Phase 2 commissioning, with two main goals:
 - ✓ tune SuperKEKB with nanobeams eventually reach KEKB design luminosity
 - ✓ ensure background levels are compatible with vertex detector operation
 - ✓ then, if compatible with the above, also do some physics without vertex detectors at the Y(6S)?
- Summer 2018: install vertex detectors
- End 2018: full detector operation start of Physics run

SuperKEKB/Belle II schedule

SuperKEKB/Belle II schedule

ご清聴ありがとうございました (GOSEICHOU ARIGATOU GOSAIMASHITA)

Backup slides

Verification of Nano-Beam Scheme

Low Emittance with Large Piwinski Angle

Specific Luminosity, $L_{sp} > 4 \times 10^{31} [cm^{-2}s^{-1}/mA^{2}]$

 $L_{sp} = 1.7 \times 10^{31} @ KEKB$

Beam-Beam Parameter, $\xi_y > 0.05$

Reduce **Beam Background** for Belle II detector before we move on Phase 3

Phase-2 commissioning is <u>only 5 months</u> from mid of February to mid of July.

BEAST II - Phase 2

Phase 2 VXD Volume

Commissioning phase 2 (~5 months)

- Machine condition
 - w/ QCS, w/ Belle II (w/o VXD), full accelerator tuning
- Tuning items
 - Optics tuning
 - Tentative target values of IP beta's: β_x*: x4, β_y*: x8
 - Optics tuning with QCS and Belle II solenoid
 - Low emittance tuning w/ Belle II solenoid
 - Optics tuning w/ beam collision
 - Detector beam background
 - Study with Belle II detector, test of continuous injection (BEAST)
 - Beam collision tuning
 - Orbit feedback (fast feedback, dithering system)
 - Collision tuning w/ "Nano-Beam" scheme
 - Luminosity tuning
 - Tuning knobs (x-y coupling at IP etc.)
 - Tentave target luminosity: 1 x 10³⁴ cm⁻² s⁻¹ (design of KEKB)
 - Increase of beam currents (instability, RF power, vacuum issues)
 - Detector background may possibly give some restriction.
 - Continue upgrade for RF system (support ~70% of design beam currents)

Luminosity profile of a next generation B factory

Expected yearly data sample @ full luminosity					
Channel	Belle	BaBar	Belle II (per year) [*]		
$B\bar{B}$	7.7×10^8	$4.8 imes 10^8$	1.1×10^{10}		
$B_{s}^{(*)}\bar{B}_{s}^{(*)}$	7.0×10^{6}	_	$6.0 imes 10^8$		
$\Upsilon(1S)$	1.0×10^8		1.8×10^{11}		
$\Upsilon(2S)$	1.7×10^8	$0.9 imes 10^7$	$7.0 imes 10^{10}$		
$\Upsilon(3S)$	1.0×10^7	1.0×10^8	$3.7 imes 10^{10}$		
$\Upsilon(5S)$	3.6×10^7	_	$3.0 imes 10^9$		
ττ	1.0×10^9	0.6×10^9	1.0×10^{10}		
* assuming 100% running at each energy					

G. Finocchiar

NP-sensitivity at Belle II and comparison with LHCb

- Comparison table in 2008
- Must revise the extrapolations in viere recent developments (e.g. LHCb achievements)
- Extrapolation of *Belle* II sensitivity by scaling *B*-factory measurements as:

2016 2017 2018 2019 2020 2021 2022 2023 Year

$$\sigma_{Bellell} = \sqrt{(\sigma_{stat}^2 + \sigma_{sys}^2) \frac{\mathcal{L}_{Belle}}{50 \text{ ab}^{-1}} + \sigma_{irred}^2}$$

NP-sensitivity at Belle II and comparison with LHCb

- Comparison table in 2008
- Must revise the extrapolations in view recent developments (e.g. LHCb achievements)
- Extrapolation of *Belle* II sensitivity by scaling *B*-factory measurements as:

$$\sigma_{\textit{Bellell}} = \sqrt{(\sigma_{\textit{stat}}^2 + \sigma_{\textit{sys}}^2) \frac{\mathcal{L}_{\textit{Belle}}}{50 \text{ ab}^{-1}} + \sigma_{\textit{irred}}^2}$$

Yield gain in a few data taking configurations

The hourglass effect

- Small amplitude @ IP not efficient with long bunches
 - particles in the head and tail of the bunch will see a larger β_y
 - → " β_v " should be comparable to the *overlapping area*"
- In a storage ring
 - it is comparably easier to achieve small horizontal size and emittance than to make short bunches
 - vertical emittance/size scale with the horizontal ones