

SuperKEKB/Belle II

Kenkichi Miyabayashi
(Nara Women's University, Japan)
Hadron2013, Nara
2013 Nov. 8th

Outline

- Lessons from B-factories
- What we can expect with higher luminosity
- SuperKEKB accelerator and Belle II detector construction status/schedule
- Summary

B-factories

KEKB&Belle 8GeV×3.5GeV

PEP II&BaBar 9GeV×3.1GeV

<u>Integrated luminosity of B factories</u>

1998/1 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012/1

In total, more than 1.5 ab⁻¹ including 1G BB pairs are recorded at B-factories

Originally in order for time-dependent CPV

This is very demanding measurement, requires sophisticated detector and analysis methodology!

All these are great benefit

 4π general purpose spectrometer with

- High momentum resolution, $\sigma_p/p = 0.3\%@1GeV/c$.
- Ability to detect γ down to 30 MeV.
- Good γ energy resolution, $\sigma_{\rm M}$ =5MeV for $\pi^0 \rightarrow \gamma \gamma$.
- Lepton identification capability, ε>0.9, fake<0.01.
- K/π/p separation capability, ε~0.9, fake<0.1.
- Excellent B decay vertex reconstruction, $\sigma_{\Delta z}$ =80 μ m.

+

World highest luminosity

Then, we have had ...

A lot of discoveries!

Synergy among measurements (I)

Anomalous $\Upsilon(nS)\pi^+\pi^-$ production at $\Upsilon(5S)$ $\to Z_b^+$ in $\Upsilon(nS)\pi^+$

Synergy among measurements (II)

BaBar discovered Y(4260)→J/ψπ⁺π⁻ in Initial State Radiation

PRL95, 142001 (2005)

Synergy among measurements (III)

For $\psi(4040)$ and $\psi(4160)$, "seen in ISR" imply a few % branching fraction to J/ $\psi\eta$, compatible with "unseen in B decay".

→comprehensive understanding.

Synergy with other exp. (I)

"NAGARA" event PRL87,212502(2001)

Search for H-dibaryon in $\Upsilon(1S)$ and $\Upsilon(2S)$ decays have been performed.

PRL110,222002(2013)

Synergy with other exp. (II)

J-PARC P50 proposal $\pi N \rightarrow D^* Y_c$ (Y_c: charmed baryon)

MC: assuming 1nb for Λ_c .

Exclusive reconstruction ≠ missing mass technique complementary each other.

Limitation at current statistics (I)

 $X(3872) \rightarrow J/\psi \gamma$: established

 $X(3872) \rightarrow \psi(2S) \gamma$: contradicting

PRL107,091803(2011)

This puzzle can only be solved by a higher statistics e⁺e⁻ machine.

PRL102,132001(2009)

Limitation at current statistics (II)

 $Z(4430)^{\pm} \rightarrow \psi(2S)\pi^{\pm}$

Significant signal at Belle v.s.

Only hint with 1.9σ at BaBar

Statistically, both are not contradicting with each other, but clear answer is to be given by higher statistics data.

Limitation with available statistics (III)

Seen v.s. Unseen, only higher statistics e⁺e⁻ data can give a clear answer.

15

Lessons from B-factories

- Challenge good physics even if it looks requiring extraordinary detector performance and analysis methodology.
- It will become huge bonus for other possible topics.
- In order to solve still existing puzzles, we need higher statistics data.

What should we aim further

- Because of variety of recorded reactions, B decay, ISR, two photon collision, bottomonium decays, ... B-factories have brought a lot of synergy effects.
 - Among B-factory measurements.
 - With other experiments.
- We have advantage in the detection of γ , π^0 , as well as long-lived hyperons.

We want to evolve in this direction!

SuperKEKB

Nano-beam collision

$$L = \frac{\gamma_{e\pm}}{2er_e} \left(1 + \frac{\sigma_y^*}{\sigma_x^*}\right) \left(\frac{I_{e\pm} \cdot \xi_{y,e\pm}}{\beta_y^*}\right) \left(\frac{R_L}{R_{\xi_y}}\right)$$

To increase luminosity, small β function is used.

To handle hourglass effect, β >size of collision spot.

→Large crossing angle, one bunch behaves as "super bunch".

Magnets have been installed

March 2013

(2)KEKB電磁石撤去済 新ビームライン用測量・罫描き 済 ベースプレート設置進行中

Belle II Detector

layers)

K_L and muon detector:

Resistive Plate Counter (barrel outer layers)
Scintillator + WLSF + MPPC (end-caps, inner 2 barrel

EM Calorimeter

CsI(TI), waveform sampling (baseline) (opt.) Pure CsI for end-caps

electron (7GeV)

Beryllium beam pipe
2cm diameter

Vertex Detector

2 layers DEPFET + 4 layers DSSD

Central Drift Chamber

He(50%):C₂H₆(50%), Small cells, long lever arm, fast electronics

Particle Identification

Time-of-Propagation counter (barrel)
Prox. focusing Aerogel RICH (fwd)

positron (4GeV)

Better or same performance under ×20 beam background!

VXD=PXD+SVD

prototype DEPFET sensor

DEPFET mockup

CDC

Larger diameter than Belle.

Wire stringing is on going.

Innermost part has been completed

Electronics is tested by cosmic.

Particle identification

partial Cerenkov ring reconstruction from x, y and t of propagation Proximity focusing Aerogel RICH (endcap)

TOP test beam result

Electromagnetic calorimeter

New electronics with 2MHz wave form sampling

ECL (endcap): pure Csl crystals;(not day-1) faster performance and better rad. hardness than Csl(Tl).

KLM status

In this FY, installation is going on. RPC → Scintillator+MPPC readout.

SuperKEKB/Belle II schedule

Expected luminosity

50 ab⁻¹ will be accumulated by 2022.

Summary

- Because of superb detector performance with excellent accelerator luminosity, Bfactory experiments have been serving as the "Hub" to give a comprehensive understanding in hadron spectroscopy.
- We pursue this direction by SuperKEKB and Belle II with 50 ab⁻¹ by 2022.
- Accelerator and detector construction are going on toward 2015 commisionning.