Belle II Status and Physics Prospects

Pablo Goldenzweig (For the Belle II Collaboration)

Les Rencontres De Physique de la Vallée d'Aoste

La Thuile, Italy March 6-11, 2017

- · B factories legacy.
- · SuperKEKB and Belle II status and timeline.
- Selection of tensions with the SM and prospects for Belle II.

Success of the B factories (1999-2010)

- Spectacular accelerator and detector performance.
- Discovery of *CP* violation in *B* decays.
- Confirmation of the CKM picture of flavor physics.
- Discovery of several new particles.
- Probe of rare B decays.
- Limits on New Physics scenarios.

Integrated luminosity of B factories

Belle II Status and Physics Prospects

Complementarity to LHCb

Belle II

- Clean experimental environment.
- Holistic interpretation of events with missing energy (ν).
- Decays with multiple photons.
- Inclusive decays $(B \to X_{s,d}\gamma)$.
- Long-lived particles $(K_S \text{ and } K_L)$.

LHCb

- Large cross section.
- Decays to all charged particle final states.
- Fast mixing.

B2TiP	Report	(in progress)
		(

Observables	Expected th. ac-	Expected exp. un-	Facility (2025)
	curacy	certainty	
UT angles & sides			
ϕ_1 [°]	***	0.4	Belle II
φ ₂ [°]	**	1.0	Belle II
\$ [°]	***	1.0	Belle II/LHCb
$S(\dot{B}_s \rightarrow J/\psi \phi)$	***	0.01	LHCb
$ V_{cb} $ incl.	***	1%	Belle II
$ V_{cb} $ excl.	***	1.5%	Belle II
V _{wb} incl.	**	3%	Belle II
$ V_{ub} $ excl.	**	2%	Belle II/LHCb
CPV			
$S(B \rightarrow \phi K^0)$	***	0.02	Belle II
$S(B \rightarrow n'K^0)$	***	0.01	Belle II
$\beta_{eff}^{eff}(B_{-} \rightarrow \phi \phi)$ [rad]	**	0.1	LHCb
$\beta^{\text{eff}}(B_* \rightarrow K^{*0}\bar{K}^{*0})$ [rad]	**	0.1	LHCb
$A(B \rightarrow K^0 \pi^0)[10^{-2}]$	***	4	Belle II
$A(B \rightarrow K^{+}\pi^{-})$ [10 ⁻²]	***	0.20	LHCb/Belle II
(Semi-)leptonic		0.00	
$B(B \rightarrow \tau \nu)$ [10 ⁻⁶]	**	3%	Belle II
$\mathcal{B}(B \rightarrow \mu \mu)$ [10 ⁻⁶]	**	7%	Belle II
$B(B \rightarrow D\pi \mu)$ [10]	***	3%	Belle II
$R(B \rightarrow D^* \tau \nu)$	***	2%	Belle II/LHCb
Radiative & EW Penguine		-70	
$\mathcal{B}(B \rightarrow X \sim)$	**	4%	Belle II
$A_{\rm cm}(B \rightarrow X_{\rm cm}) [10^{-2}]$	***	0.005	Belle II
$S(B \rightarrow K^0 \pi^0 \gamma)$	***	0.03	Belle II
$2\beta^{\text{eff}}(B \rightarrow d\infty)$	***	0.05	LHCb
$S(B \rightarrow m)$	**	0.07	Belle II
$\mathcal{B}(B \rightarrow \infty)$ [10 ⁻⁶]	**	0.3	Belle II
$\mathcal{B}(B \rightarrow K^* \nu \overline{\nu}) [10^{-6}]$	***	15%	Belle II
$R(B \to K_{\rm H}\pi)$ [10 ⁻⁶]	***	20%	Rollo II
$D(D \rightarrow R\nu\nu)$ [10] $a^2 A_{mn}(R \rightarrow K^* mn)$	**	0.05	I HCb/Pollo II
$q_0 \Lambda_{FB}(D \rightarrow K \mu \mu)$ $R(D \rightarrow \pi) [10^{-3}]$	***	0.00 2	Rollo II
$B(B_s \rightarrow II)$ [10] $B(B \rightarrow III)$	***	10%	I HCb/Pollo II
Chame		1070	integration in
R(D) uu)	***	0.052	Pollo II
$\mathcal{B}(D_x \rightarrow \mu\nu)$	***	90.370	Belle II
$\Delta A_{}(D^0 \rightarrow K^+ K^-)$ [10 ⁻⁴]	**	0.1	L HCh
$\Delta A C P (D \rightarrow R R) [10]$	**	0.1	D.U. H
$A_{CP}(D \rightarrow K_S \pi) [10]$	***	0.03	Delle II Delle II
$ q/p (D \rightarrow K_S \pi \pi)$ $(D^0, V^0 = + -) (0)$	***	0.03	Delle II Delle II
$\psi(D \rightarrow R_{S^{n}} \pi)$		4	Dene II
Tau	***	~ 5	Pollo II
$\tau \rightarrow \mu \gamma [10^{-9}]$	***	< 10	Delle II
$\tau \rightarrow e\gamma [10^{-1}]$	***	< 10	Delle II Delle II/I II/I
$\tau \rightarrow \mu \mu \mu [10^{-1}]$		< 0.5	Dene II/LHCD

Upgrade for SuperKEKB and Belle II to achieve $40x~peak~\mathcal{L}$ under 20x bkgd

- Reduction in the beam size by 1/20 at the IP.
- Doubling the beam currents.

- ▶ First turns achieved Feb. 2016
- ► Beam-background studies ongoing

The Intensity Frontier

Targets:

Instantaneous luminosity $8 \times 10^{35} \text{cm}^{-2} \text{s}^{-1}$ Integrated luminosity 50ab^{-1} by 2024

P. Goldenzweig

Belle II Status and Physics Prospects

Belle II Detector

Targeted improvements:

- Increase K_S^0 efficiency.
- Improve IP and secondary vertex resolution.
- Improve K/π separation.
- Improve π^0 efficiency.
- Add particle ID and μ ID in endcaps.

Vertex Detector

Si pixel (2 layers) and strip (4 layers):

• 1^{st} pixel layer at r = 14mm to IP [Belle at r = 20mm]

> Improves vertex resolution along z-axis

• Larger SVD w/outer layer at r = 135mm. [Belle at r = 88mm]

Higher fraction of K_S ' with vertex hits improves vertex resolution

Tracking Detector

Central Drift Chamber:

- Larger outer radius of 1111mm (Belle 863mm) allows for improved p resolution.
- Smaller cells with lower occupancy and capacity for higher hit rate.

Simulated track reconstruction efficiency Stable performance for up to 3x predicted beam BG

(Preliminary)

Particle Identification

Two RICH systems covering full momentum range

- Barrel: Time of Propagation (TOP) counter (16 modules).
 - \Rightarrow Measure x-y position of Cherenkov γ 's and their arrival time.
- Forward Endcap: Aerogel Ring Imaging Cherenkov detector (ARICH)
 - \Rightarrow Proximity focusing with silica aerogel (4 σ separation at 1 3.5 GeV/c)

P. Goldenzweig

Belle II Status and Physics Prospects

Electromagmetic Calorimeter

Re-usage of Belle's CsI(TI) crystal calorimeter, but with new electronics with 2MHz wave form sampling to compensate for the larger beam-related backgrounds and the long decay time of CsI(TI) signals.

 \Rightarrow Resolution much better at Belle II

Peak energy resolution in the ECL barrel as a function of true photon energy

Roadmap

Phase 1 (completed):

- Circulate beams (no collisions.)
- Tune optics, vacuum scrubbing, and beam background studies.

Phase 2:

- First collisions.
- Beam commissioning.
- Physics run with Belle II w/o VXD on Υ(4S) (& possibly Υ(6S)).
- New triggers for exotic dark signatures.

Phase 3:

- Luminosity tuning.
- Physics run with full Belle II.

Many open questions and as-yet unobserved processes awaiting Belle II data...

Direct CP Violation in $B \to K\pi$ Decays

Belle, PRD 87, 031103(R) (2013)

Figure 17.4.4. The dominant Tree-level (a) and Penguin-loop (b) Feynman diagrams in the two-body decays $B \to K\pi$ and $B \to \pi\pi$ (Lin, 2008).

Measurements of DCPV in $B^+ \to K^+\pi^0$ found to be different than in $B^0 \to K^+\pi^-$, contrary to naive expectation from the presence of electroweak penguin diagrams.

 $\mathcal{A}_{K^+\pi^0} - \mathcal{A}_{K^+\pi^-} = 0.112 \pm 0.027 \pm 0.007$ (4 σ)

The difference could be due to:

- Neglected diagrams contributing to B decays (theoretical uncertainty is still large). $K^+\pi^-: T + P + P^C_{EW}$
 - $K^{+}\pi^{0}: T + P + C + P_{EW} + P_{EW}^{C} + A$
- Some unknown NP effect that violates Isospin.
- $\Rightarrow In combination with other K\pi measurements and$ with the larger Belle II dataset, strong interactioneffects can be controlled and the validity of theSM can be tested in a model-independent way.

$B \to K\pi$: Test of sum rule

Test-of-sum (isospin) rule for NP nearly free of theoretical uncertainties, where the SM can be tested by measuring all observables: [Proposed by: PLB 627, 82(2005), PRD 58, 036005(1998)]

$$I_{K\pi} = \mathcal{A}_{K+\pi^-} + \mathcal{A}_{K0}_{\pi} + \frac{\mathcal{B}(K^0\pi^+)}{\mathcal{B}(K+\pi^-)} \frac{\tau_{B^0}}{\tau_{B^+}} - 2\mathcal{A}_{K+\pi^0} \frac{\mathcal{B}(K^+\pi^0)}{\mathcal{B}(K+\pi^-)} \frac{\tau_{B^0}}{\tau_{B^+}} - 2\mathcal{A}_{K0}_{\pi^0} \frac{\mathcal{B}(K^0\pi^0)}{\mathcal{B}(K+\pi^-)}$$
$$I_{K\pi} = -0.270 \pm 0.132 \pm 0.060 \quad (1.9\sigma)$$

Isospin sum rule can be presented as a band in the $\mathcal{A}_{K^0\pi^0}$ vs. $\mathcal{A}_{K^0\pi^+}$ plane. *Current data Belle II \mathcal{L} = 50ab⁻¹ \int_{\mathbb{R}^{k^0\pi^0}} \int_{\mathbb{R}^{k^0\pi^0}*

→ Most demanding measurement is $K^0 \pi^0$ final state. With Belle II, the uncertainty on $\mathcal{A}(B \to K^0 \pi^0)$ from time-dep. analyses is expected to reach ~ 4% ⇒ Sufficient for NP studies.

Leptonic B decays

In the SM, annihilation process mediated by W^{\pm}

$${\cal B}(B^+ o \ell^+
u_\ell)_{
m SM} = rac{G_F^2 m_B m_\ell^2}{8\pi} \left(1 - rac{m_\ell^2}{m_B^2}
ight)^2 f_B^2 |V_{ub}|^2 au_B$$

$$\begin{aligned} & \mathcal{B}(l=\tau) > \mathcal{B}(l=\mu) > \mathcal{B}(l=e) \\ & \mathcal{O}(10^{-4}) \quad \mathcal{O}(10^{-7}) \quad \mathcal{O}(10^{-11}) \end{aligned}$$

 $\begin{array}{l} f_B\colon B \text{ meson decay constant. } Can \ be \ calculated \ from \ Lattice \ QCD. \\ V_{ub}\colon \text{CKM matrix element. } Can \ be \ measured \ from \ b \rightarrow ul\nu \ decays. \\ Both \ can \ also \ be \ obtained \ from \ a \ CKM \ global \ fit. \end{array}$

Leptonic B decays

In the SM, annihilation process mediated by W^{\pm}

$${\cal B}(B^+ o \ell^+
u_\ell)_{
m SM} = rac{G_F^2 m_B m_\ell^2}{8\pi} \left(1 - rac{m_\ell^2}{m_B^2}
ight)^2 f_B^2 |V_{ub}|^2 au_E$$

$$\begin{array}{l} \mathcal{B}(l=\tau) > \mathcal{B}(l=\mu) > \mathcal{B}(l=e) \\ \mathcal{O}(10^{-4}) \quad \mathcal{O}(10^{-7}) \quad \mathcal{O}(10^{-11}) \end{array}$$

 $\begin{array}{l} f_B\colon B \text{ meson decay constant. } Can \ be \ calculated \ from \ Lattice \ QCD. \\ V_{ub}\colon \text{CKM matrix element. } Can \ be \ measured \ from \ b \rightarrow ul\nu \ decays. \\ Both \ can \ also \ be \ obtained \ from \ a \ CKM \ global \ fit. \end{array}$

In a type-II two-Higgs-doublet model

$$\mathcal{B}(B^+ o au^+
u_ au) = \mathcal{B}(B^+ o au^+
u_ au)_{ ext{SM}} imes \left| 1 - rac{ au a^2 eta}{m_{H^\pm}^2} m_B^2
ight|$$

12

 $B^+ \to \tau^+ \nu_{\tau}$

Current measurements approach $\mathcal{B}(B^+ \to \tau^+ \nu_{\tau})_{\rm CKM} = (0.821^{+0.034}_{-0.028}) \times 10^{-4}$ Belle II at $50ab^{-1}$ is expected to achieve $\approx 6\%$ precision.

(Projection from new Belle hadronic tag result)

+ New Full Event Interpretation algorithm for tag-side reconstruction

 $\begin{array}{l} \mbox{Hadronic tag:}\\ \epsilon(B^0_{tag}) = 0.33\% \ \mbox{Belle II } \epsilon(B^+_{tag}) = 0.36\% \\ \epsilon(B^0_{tag}) = 0.19\% \ \mbox{Belle I } \epsilon(B^+_{tag}) = 0.28\% \end{array}$

P. Goldenzweig

Semileptonic decay $B \to D^{(*)} \tau \nu$

- Larger \mathcal{B} and less theoretical uncertainty than $B^+ \to \tau^+ \nu_{\tau}$.
- New Physics could change the ratios $\mathcal{R}(D^{(*)}) = \frac{\mathcal{B}(\overline{B} \to D^{(*)}\tau\nu)}{\mathcal{B}(\overline{B} \to D^{(*)}\ell\nu)}.$
- Effect could be different for D and D^* .

Large mass of τ adds sensitivity to additional helicity amplitude.

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2 |V_{cb}|^2 |p| q^2}{96 \pi^3 m_B^2} \left(1 - \frac{m_\tau^2}{q^2}\right)^2 \left[\left(\left|H_{++}\right|^2 + \left|H_{--}\right|^2 + \left|H_{00}\right|^2\right) \left(1 + \frac{m_\tau^2}{2q^2}\right) + \frac{3}{2} \frac{m_\tau^2}{q^2} \left|H_{t0}\right|^2 \right]$$

A charged Higgs (2HDM type II) of spin 0 couples to the τ and will only affect H_{t0} :

$$H_{t0}^{\rm 2HDM} = H_{t0}^{\rm SM} \times \left(1 - \frac{\tan^2\beta}{m_{H^{\pm}}^2} \frac{q^2}{1 \mp m_c^2/m_b^2}\right)$$

This could enhance or decrease the ratios $R(D^*)$ depending on $\frac{\tan^2 \beta}{m_{H^{\pm}}^2}$

 $C^{2} |V_{r}|^{2} |+ 2 \langle 2 \rangle^{2} \Gamma \qquad (2)$

$\overline{B} \to D^{(*)} \tau \overline{\nu}$ with Belle II

- Very clean prediction from theory.
- World average 4σ away from SM.
- Belle II can achieve $\approx 3\%$ precision.

Belle combination includes: PRD 92, 072014 (2015), PRD 94, 072007 (2016), arXiv:1612.00529.

P. Goldenzweig

11.3.2017 18 / 22

Electroweak penguin decays $b \rightarrow s \ l^+ l^-$

• Within the SM, decays proceed via one loop diagram: JHEP0712:040,2007

 $\mathcal{R}_K = \frac{\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \to K^+ e^+ e^-)} = 1.00030^{+0.00010}_{-0.00007}$

- LHCb reported a 2.6σ deviation for the dilepton invariant mass squared region $1 < q^2 < 6 \text{ GeV}^4/c^2$: $\mathcal{R}_K = 0.745^{+0.090}_{-0.074} \pm 0.036$ Phys. Rev. Lett. **113** 151601 (2016)
- Electron mode challenging for LHCb.
- Electrons and muons have the same ε at Belle II:
 ⇒ Both low and high q² regions possible.

Full angular analysis of $B \to K^* l l$

New lepton-flavour-dependent angular analysis by Belle

CKM 2016 (To appear in PRL)

- Largest deviation of 2.6σ from the SM for the muon channel for $4 < q^2 < 8 \text{ GeV}^4/c^2$.
- Electron channel deviation of 1.1σ .
- Belle II and LHCb will be comparable for this process.
- Belle II will be able to perform an isospin comparison of K^{*+} and K^{*0} , or the ground states K.

Absolute error on P_5'

$q^2 (GeV^2)$	Belle	Belle II $(50ab^{-1})$
0.10 - 4.00	0.416	0.059
4.00 - 8.00	0.277	0.040
10.09 - 12.00	0.344	0.049
14.18 - 19.00	0.248	0.033

Neutrino EWP decays $b \to s, d\nu\overline{\nu}$

Karlsruhe Institute of Technology

\Rightarrow The ultimate test of Belle II

- Theoretically clean due to a maximum of one electromagnetically interacting charged particle in the final state, as opposed to $K^{(*)}l^+l^-$ decays.
- Several new physics models (SUSY, non-standard Z coupling) could enhance these decays.

Projections from Belle hadronic tag result \Rightarrow

CKM 2016 (Preliminary)

This work = Belle Semi-leptonic tag

arXiv:1702.03224 (Submitted to PRD)

mode	$B_{SM}[10^{-6}]$	$N_{Sig-exp.}(50ab^{-1})$	Statistical error	Total Error
$B^+ \rightarrow K^+ \nu \bar{\nu}$	4.68	245	20%	22%
$B^0 \rightarrow K^0_S \nu \bar{\nu}$	2.17	22	94%	94%
$B^+ \rightarrow K^{*+} \nu \bar{\nu}$	10.22	158	21%	22%
$B^0 \rightarrow K^{*0} \nu \bar{\nu}$	9.48	143	20%	22%
$B \rightarrow K^* \nu \bar{\nu}$ combined			15%	17%

- ▶ The SuperKEKB accelerator is operational and beam background studies are under way.
- ▶ The Belle II detector construction is nearing completion.
- ▶ Physics with partial detector scheduled for late 2017.
- ▶ Full detector to begin taking data in 2018.
- ▶ Many open questions to address.
- ▶ Broad program to search for NP with flavor observables.