RARE B DECAYS at **Belle II**

Hülya Atmacan

University of South Carolina

HINT2016

December 7, 2016

 $q^2 \, [{\rm GeV}^2/{\rm c}^4]$

Existing Anomaly Examples in B Decays

^B-Signatures of New $B \to K^*\ell\ell$ Physics? $Br(B \to D^{(*)}\tau v)$ Need more data! $Br(B \to D^{(*)}lv)$ ~4.00

deviation from Standard Model (SM)

 $B \to K^* \ell \ell$

•
$$R_{K} = \frac{Br(B \to K\mu^{+}\mu^{-})}{Br(B \to Ke^{+}e^{-})} \sim 2.6\sigma$$

deviation from SM [PRL 113, 151601 (2014)]

•
$$B \rightarrow K^* \mu^+ \mu^-$$

~3.7 σ (LHCb), ~2.6 σ (*Belle*) deviation from SM prediction in P₅' for 4<q²<8 GeV²

Belle II Detector

- full solid angle detector; clean event environment; well defined initial state.
- Improved detector efficiency and purity (tracking, PID, K/ π separation, ...).
- Good and efficient reconstruction of decays with neutrals.
- Smarter software and precise algorithms.

Covered by Hiroshi Kaji (SuperKEKB) and Katsuro Nakamura (Belle II) on Monday (Dec. 5 2016)

HINT2016

Outline

- Radiative and Electroweak Penguin *B* Decays
 - Branching Fraction of $B \rightarrow X_s \gamma$
 - Direct *CP* Asymmetry in $B \rightarrow X_{(s+d)} \gamma$
 - Time Dependent CP Violation in $B \rightarrow K^{*0} \gamma$
 - Electroweak penguin $b \rightarrow s \ l^+ \ l^-$
 - Missing Energy Decay $B \to K^{(*)} \nu \ \overline{\nu}$

Radiative and Electroweak (EW) Penguin B Decays

• Flavour-Changing Neutral Currents (FCNC): occur only at the loop level.

• Non-SM particles (eg. H^- in Two-Higgs Qoublet Model type $W(2HDM^{2}II)$), H^+ may contribute to loop and box diagrams Z^{0} $\mu^ H^{0}$ μ^-

S

Radiative and Electroweak (EW) Penguin B Decays

HINT2016

• Efective Hamiltonian for $b \rightarrow s$ transition (

$$H_{eff} = -\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*$$

- C_i are Wilson coefficients, and O_i are the
 - *i* = 1, 2 Tree
 - *i* = *3*-*6*, **8 Gluon** penguin
 - *i* = 7 Photon penguin
 - *i* = 9, 10 **Electroweak penguin**
 - i = S, P(Pseudo)scalar penguin
- Decays sensitive to different Wilson coeffi
 - $B \rightarrow X_s \gamma$ C_7

H. Atmacan

•
$$B \rightarrow X_s l^+ l^-$$
 C7, C9, C10

Op

Wi

fec

Branching Fraction (BF) of $B \rightarrow X_s \gamma$

- Current SM next-to-next-toleading order (*NNLO*) *BF* [*PRL* 114, 221801, 2015]
- HFAG 2016 / PDG 2015 Average

$$Br(\bar{B} \to X_s \gamma)_{E_{\gamma} > 1.6 GeV} = (3.34 \pm 0.21_{stat} \pm 0.07_{sys}) \times 10^{-4}$$

 $Br(\bar{B} \to X_s \gamma)_{E_v > 1.6 GeV}^{NNLO} = (3.36 \pm 0.23) \times 10^{-4}$

- Experiment and theory are in agreement

 tight constraints on NP scenarios e.g.

 2HDM-II.
- The newest *Belle* result with fully inclusive method has only 7.3% uncertainty.
 - Limit on 2HDM-II:

 $M(H^+) > 580 \; GeV \: at \; 95\% \; CL$

BF($B \rightarrow X_s \gamma$) at Belle II

- *Belle II* mission: reduce the systematic uncertainty with huge data.
- Can also measure the *BF* with $E_{\gamma} > 1.6$ GeV without extrapolation.

- 3.9 % total error will be reachable with
 50 ab⁻¹ (conservatively estimated).
 - comparable to uncertainty due to non-perturbative effect, very hard to reduce, in theory [PRL 114, 221801 (2015)].

$\sum_{B \in II} \text{Direct CP Asymmetry in } B \rightarrow X_{(s+d)} \gamma$

• The SM predicts quite different A_{CP} for $B \rightarrow X_s \gamma$ and $B \rightarrow X_d \gamma$

$$A_{CP}^{b \to q\gamma} \equiv \frac{\Gamma(\bar{B} \to X_q \gamma) - \Gamma(B \to X_{\bar{q}} \gamma)}{\Gamma(\bar{B} \to \bar{X}_q \gamma) + \Gamma(B \to X_{\bar{q}} \gamma)}$$

 $A_{CP}(\bar{B} \to X_{s}\gamma) = (+0.44^{+0.24}_{-0.14}) \times 10^{-2}$ $A_{CP}(\bar{B} \to X_{d}\gamma) = (-10.2^{+3.3}_{-5.8}) \times 10^{-2}$

2 [Nucl.Phys.B704:56-74,2005]

• Thanks to U-spin relations and unitarity of the *CKM* matrix, A_{CP} for $b \rightarrow (s+d)\gamma$ is negligible (close to 0).

If $A_{CP}(B \rightarrow X_{(s+d)} \gamma)$ deviates from 0, it will be a clear NP signal.

$\sum_{B \in II} \text{Direct CP Asymmetry in } B \to X_{(s+d)} \gamma \text{ and } \Delta A_{CP}(B \to X_s \gamma)$

[Nucl.Phys.B704:56-74,2005]

• The SM predicts quite different A_{CP} for $B \rightarrow X_s \gamma$ and $B \rightarrow X_d \gamma$

$$A_{CP}^{b \to q\gamma} \equiv \frac{\Gamma(\bar{B} \to X_q \gamma) - \Gamma(B \to X_{\bar{q}} \gamma)}{\Gamma(\bar{B} \to \bar{X}_q \gamma) + \Gamma(B \to X_{\bar{q}} \gamma)}$$

 $A_{CP}(\bar{B} \to X_{s}\gamma) = (+0.44^{+0.24}_{-0.14}) \times 10^{-2}$ $A_{CP}(\bar{B} \to X_{d}\gamma) = (-10.2^{+3.3}_{-5.8}) \times 10^{-2}$

• Thanks to U-spin relations and unitarity of the *CKM* matrix, A_{CP} for $b \rightarrow (s+d)\gamma$ is negligible (close to 0).

If $A_{CP}(B \rightarrow X_{(s+d)} \gamma)$ deviates from 0, it will be a clear NP signal.

• One more quantity, $\Delta A_{CP} = A_{CP}(B^{\pm}) - A_{CP}(B^0 / \overline{B^0})$ contains information on C_8 [Phys.Rev.Lett. 106 (2011) 141801]

$$\Delta A_{CP} \approx 4\pi^2 \alpha_s \frac{\Lambda_{78}}{m_b} \operatorname{Im}\left(\frac{C_8}{C_7}\right)$$

• In the SM, phases in C_7 and C_8 are zero $\Rightarrow \Delta A_{CP} = 0$

If $\Delta A_{CP}(B \rightarrow X_s \gamma)$ deviates from 0, it will be a clear NP signal.

Direct CP Asymmetry in $B \rightarrow X_{(s+d)} \gamma$

 Recently *Belle* performed world best measurement (710 fb⁻¹ Υ(4S)).

$$A_{CP}(B \to X_{(s+d)}\gamma) = (2.2 \pm 3.9 \pm 0.9)\%$$

- Inclusively reconstruct photon with $1.7 < E_{\gamma} < 2.8 \text{ GeV}.$
- High momentum lepton to tag flavor of the other B.
 - $1.10 \le p_l^* \le 2.25 \text{ GeV}$

• This requires an amplitude analysis,

$$m_{bc}(m_{ES}) \equiv \sqrt{E_{Beam}^2 - \left|\vec{p}_B\right|^2}$$

- Only measured by BABAR (429 fb⁻¹ Υ(4S)).
- Sum-of-exclusive method with 38 exclusive B decay modes.
 - Only self-tagged modes were used.

$$\Delta A_{X_{s\gamma}} = +(5.0 \pm 3.9 \pm 1.5)\%$$

• Quoted systematic error is *conservative*.

$A_{CP}(B \rightarrow X_{(s+d)} \gamma)$ and $\Delta A_{CP}(B \rightarrow X_s \gamma)$ at Belle II

• In both A_{CP} and ΔA_{CP} measurements most of systematic error cancel out. \rightarrow both are still statistically dominated at *Belle II* with 50 ab⁻¹.

- If the central values don't change:
 - Uncertainty in A_{CP} to be $\pm 0.61\% \rightarrow 3.4 \sigma$.
 - Uncertainty in ΔA_{CP} to be $\pm 0.37\% \rightarrow 13.5 \sigma$.

BABAR

$$\Delta A_{X_{s\gamma}} = +(5.0 \pm 3.9 \pm 1.5)\%$$
Belle II

$$\Delta A_{X_{s\gamma}} = +(5.0 \pm 0.37)\%$$

New physics in with right handed courrent successible traction of right handed photon.

Interfere with the SM occurs and large TDCPV possible

$S(B \rightarrow K^{*0} \gamma)$ at *Belle* and *BABAR*

• Belle : 535 M BB pairs

$$K^{*0}$$
 region
 $(0.8 < m(K_s \pi^0) < 1.0 \text{ GeV})c^2)$
 $S_{K^*\gamma} = -0.32^{0.36}_{-0.33} \pm 0.05$
 $C_{K^*\gamma} = -0.20 \pm 0.24 \pm 0.05$

• BABAR: 467 M BB pairs K^{*0} region $(0.8 < m(K_s \pi^0) < 1.0 \text{ GeV}/)c^2)$ $S_{K^*\gamma} = -0.03 \pm 0.29 \pm 0.03$ $C_{K^*\gamma} = -0.14 \pm 0.16 \pm 0.03$

No significant CP asymmetry.

$S(B \rightarrow K^{*\theta} \gamma)$ at *Belle II*

- Very important decay mode for *Belle II*.
 - Belle II vertex detector is larger than Belle (6 cm \rightarrow 11.5 cm)
 - 30% more K_s with vertex hits available.
 - Effective tagging efficiency is 13% better (very conservative).
 - Can reach 0.03 uncertainty on S.

HINT2016

Electroweak Penguin $b \rightarrow s l^+ l^-$

- Electroweak penguin (or box) diagram
- Sensitive to the effective Wilson coefficients for the electromagnetic penguin C₇ ,and the vector and axial-vector electroweak contributions C₉ and C₁₀.

- Rich set of observables:
 - Branching fraction, *CP* Asymmetry, isospin asymmetry, $q^2 = |M(l+l)|^2$, *F*_L, forward-backward asymmetry, ratio of μ mode and *e* mode.

Inclusive $B \rightarrow X_s l^+ l^-$ at *Belle*

• A_{FB} forward-backward asymmetry $B \rightarrow X_s l^+ l^-$ in *Belle*

$$A_{FB} \equiv \frac{N(\cos\theta_l > 0) - N(\cos\theta_l < 0)}{N(\cos\theta_l > 0) + N(\cos\theta_l < 0)}$$

- Sum-of-exclusive method is utilized. $B \rightarrow X_s \ l^+ \ l^-$ is reconstructed from 36 exclusive modes.
- Tension in low q^2 ($q^2 < 4.3 \text{ GeV}^2$)
- One of the key measurement in *Belle II*

Inclusive $B \rightarrow X_s l^+ l^-$ at *Belle II*

- A_{FB} forward-backward asymmetry $B \rightarrow X_s l^+ l^-$ in Belle II
 - Naïve estimation
 - Systematic error (<1%) is smaller than statistical error with 50 ab⁻¹.
 - 3.1% for q^2 bin1 [1, 3.5] GeV²
 - 2.9% for q² bin2 [3.5, 6] GeV²

R(K), **R(K**^{*}), **R(X**_s)

• Ratio of $B \rightarrow K \mu^+ \mu^-$ and $B \rightarrow K e^+ e^-$, $R_{K,}$ is a clean observable in the SM.

$$R_{K} = \frac{Br(B \to K\mu^{+}\mu^{-})}{Br(B \to Ke^{+}e^{-})} = 1.003 \pm 0.001$$
[JHEP 0712, 040 (2007)]

• LHCb reports 2.6σ deviation of

- All ratios R(K), $R(K^*)$ and $R(X_s)$ are possible
- Electron and muon modes have similar efficiency
- Sensitive to both low q^2 and high q^2 ($q^2 > 14.4 \text{ GeV}^2$)
- The errors reach to ~2% for all K, K^{*} and X_s modes

Full Angular Analysis of $B \rightarrow K^* l^+ l^-$

The differential decay rate for $B \to K^* \ell^+ \ell^-$ can be written as

$$\frac{1}{d\Gamma/dq^{2}} \frac{d^{4}\Gamma}{d\cos\theta_{L} d\cos\theta_{K} d\phi dq^{2}} = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_{L}) \sin^{2}\theta_{K} + F_{L} \cos^{2}\theta_{K} + \frac{1}{4} (1 - F_{L}) \sin^{2}\theta_{K} \cos 2\theta_{L} + \frac{1}{4} (1 - F_{L}) \sin^{2}\theta_{K} \cos 2\theta_{L} + \frac{1}{4} (1 - F_{L}) \sin^{2}\theta_{K} \cos 2\theta_{L} + \frac{1}{4} (1 - F_{L}) \sin^{2}\theta_{K} \sin^{2}\theta_{L} \cos 2\phi + \frac{1}{5} \sin 2\theta_{K} \sin^{2}\theta_{L} \cos 2\phi + \frac{1}{5} \sin 2\theta_{K} \sin^{2}\theta_{L} \cos 2\phi + \frac{1}{5} \sin 2\theta_{K} \sin 2\theta_{L} \cos \phi + \frac{1}{5} \sin 2\theta_{K} \sin 2\theta_{L} \sin \phi + \frac{1}{5} \sin 2\theta_{K} \sin 2\theta_{L} \sin \phi + \frac{1}{5} \sin 2\theta_{K} \sin 2\theta_{L} \sin 2\phi \right]$$
Transformation:
$$P_{5}', S_{5} : \left\{ \frac{\phi \rightarrow -\phi}{\theta_{L} \rightarrow \pi - \theta_{L}} \text{ for } \phi_{L} > \pi/2, \\ \bullet \text{ Free parameters reduce to three:} \\ F_{L}, S_{3}, \text{ and the observable } S_{5} \text{ or } P_{5}' \\ \bullet S_{4,7,8} \text{ or } P_{4,6,8}' \text{ have the similar transformation} \right\}$$

$$P_{1}' = 4,5,6,8' + 2 \frac{1}{2} \frac{1}{11,1,191801} P_{1}' = \frac{1}{2} \frac{1}{11,1,191801} P_{1}' = \frac{1}{2} \frac{1}{11,1,191801} P_{1}' = \frac{1}{2} \frac{1}{11,1,191801} P_{1}' = \frac{1}{2} \frac{1}{11,1} \frac{1}{11,191801} \frac{1}{11,191801} P_{1}' = \frac{1}{2} \frac{1}{11,1} \frac{1}{11,191801} \frac{1}{11,191801}$$

 P_{5}', S_{5} :

Angular Analysis of $B \rightarrow K^* l^+ l^-$ at *Belle II*

- $P_{4,6,8}$ \rightarrow overall in agreement with SM predictions.
- $P_5' \rightarrow 2.6\sigma$ deviation from Standard Model prediction in the range $4.0 < q^2 < 8.0 \text{ GeV}^2$

- *Belle II* and LHCb will be comparable for this process.
- Belle II will be able to do isospin comparison of K^{*+} and K^{*0}, or the ground states K.

Absolute error in P₅'

q² (GeV²)	Belle	Belle II 50 ab-1
0.1 - 4.00	0.416	0.059
4.00 - 8.00	0.277	0.04
10.09 - 12.0	0.344	0.049
14.18 - 19.0	0.248	0.033

$B \rightarrow K^{(*)} \nu \bar{\nu}$

- $b \rightarrow s$ flavour-changing neutral current
- golden mode of *Belle II* because theoretically very clean:

free of uncertain long-distant hadronic effects.

SM $B \to K^{(*)} \nu \overline{\nu}$ branching fractions: [BELLE2-MEMO-2016-007] $Br_{SM}(B^+ \to K^+ \nu \overline{\nu}) = (4.68 \pm 0.64) \times 10^{-6}$ $Br_{SM}(B^0 \to K_s^0 \nu \overline{\nu}) = (2.17 \pm 0.30) \times 10^{-6}$ $Br_{SM}(B^+ \to K^{*+} \nu \overline{\nu}) = (10.22 \pm 1.19) \times 10^{-6}$ $Br_{SM}(B^0 \to K^{*0} \nu \overline{\nu}) = (9.48 \pm 1.10) \times 10^{-6}$

- New *Belle* measurement of $Br(B \rightarrow h^{(*)} \nu \overline{\nu})$ with the semileptonic tagging method.
- Highest significance in the $B^+ \rightarrow K^{*+} \nu \overline{\nu}$ channel, 2.3 σ .
- None of the limits excludes SM predictions, leave room for new p contributions.

$B \rightarrow K^{(*)} v \bar{v}$ at Belle II

"Missing Energy Decay" in a Belle II GEANT4 MC simulation

Signal $B \rightarrow K \nu \nu$ tag $B \rightarrow D\pi$; $D \rightarrow K\pi$

View in *r-z*

Zoomed view of the vertex region $r-\phi$

Full Event Interpretation (FEI)

- New signal specific training technique.
- Uses a multivariate technique to reconstruct the B-tag side through lots of decay modes in a Y(4S).

https://ekp-invenio.physik.uni-karlsruhe.de/record/48602/files/EKP-2015-00001.pdf

$B \rightarrow K^{(*)} \nu \bar{\nu}$ at Belle II

MC study at *Belle II*

missing quantition

At 500 fb⁻¹ ±

 $Br(B \rightarrow K^{*+} \nu \overline{\nu})$

- 500 fb⁻¹ Υ(4S) MC samples with beam background mixing.
- FEI used to reconstruct tag side B (hadronic)
- Signal and background extraction by a 2-D fit to extra neutral energy and

 $5.27 \text{ GeV/c}^2 < M_{BC} < 5.29 \text{ GeV/c}^2$

⁻⁴ at 90% C

- The Belle II sensitivity projection is based on the previous Belle measurement (hadronic tag) ([PRD 87, 111103(R) 2013])
 - 50 ab⁻¹ of Υ(4S) data.
 - The hadronic tag have 100% higher efficiency.
 - K_S^0 reconstruction has 30% higher efficiency.

Mode	$\mathcal{B}[10^{-6}]$	Efficiency	$N_{\rm Backg.}$	$N_{\rm Sig-exp.}$	$N_{\rm Backg.}$	$N_{\rm Sig-exp.}$	Statistical	Total
		Belle	$711 \ {\rm fb}^{-1}$	$711 \ {\rm fb}^{-1}$	50 ab^{-1}	50 ab^{-1}	error	Error
		$[10^{-4}]$	Belle	Belle	Belle II	Belle II	$50 {\rm ~ab^{-1}}$	
$B^+ \to K^+ \nu \bar{\nu}$	4.68	5.68	21	3.5	2960	245	20%	22%
$B^0 \to K^0_{ m S} \nu \bar{\nu}$	2.17	0.84	4	0.24	560	22	94%	94%
$B^+ \to K^{*+} \nu \bar{\nu}$	10.22	1.47	7	2.2	985	158	21%	22%
$B^0 \to K^{*0} \nu \bar{\nu}$	9.48	1.44	5	2.0	704	143	20%	22%
$B \to K^* \nu \bar{\nu}$ combined							15%	17%

[BELLE2-MEMO-2016-007]

- *Belle II* has a rich physics program
 - possible to study the channels with missing energies and neutral particles in the final states.
- Electroweak penguin B decays are very sensitive to New Physics.
 - It is possible to access these decays both inclusively and exclusively at *Belle II*.
- Belle II will help to understand the deviations from SM in $B \rightarrow K^{(*)} l^+ l^-$.
- $B \rightarrow K^{(*)} \nu \overline{\nu}$ could be probed at 5σ .

Summary of the Sensitivities

Observables	Belle 0.7 ab^{-1}	Belle II 5 ab^{-1}	Belle II 50 ab^{-1}		
$B(B \to X_s \gamma)_{\text{incleptontag}}$	7.3%	_	3.9%		
$B(B \to X_s \gamma)_{\rm sum-of-ex}$	10.5%	_	5.7%		
$A_{CP}(B \to X_{s+d}\gamma)_{\text{incleptontag}}$	4.0%	1.5%	0.61%		
$\Delta A_{CP}(B \to X_s \gamma)_{\text{sum-of-ex}}$	3.1%	1.2%	0.37%		
$\Delta A_{CP}(B \to X_s \gamma)_{\text{inchadtag}}$	14.5%	4.0%	1.2%		
$B(B \to X_d \gamma)_{\text{sum-of-ex}}$	30%	20%	14%		
$S_{CP}(B \to K^{*0}\gamma)$	0.29	0.09	0.030		
$S_{CP}(B \to \rho^0 \gamma)$	0.63	0.19	0.064		
$B(B \to X_s \ell^+ \ell^-) \ (1 < q^2 < 6 \ \text{GeV}^2)$	20%	10%	6.2%		
$B(B \to X_s \ell^+ \ell^-) \ (q^2 > 14.4 \text{ GeV}^2)$	17%	8.0%	4.3%		
$R_{X_s} \ (1 < q^2 < 6 \ { m GeV^2})$	32%	12%	4.0%		
$R_{X_s} \ (q^2 > 14.4 \ {\rm GeV^2})$	28%	11%	3.4%		
$R_K \ (1 < q^2 < 6 \ \mathrm{GeV^2})$	28%	11%	3.6%		
$R_K \ (q^2 > 14.4 \ {\rm GeV^2})$	30%	12%	3.6%		
$R_{K^*} \ (1 < q^2 < 6 \ { m GeV}^2)$	38%	15%	4.6%		
$R_{K^*} \ (q^2 > 14.4 \ {\rm GeV^2})$	24%	9.2%	3.4%		
$P_5' \ (4 < q^2 < 8 \ { m GeV}^2)$					
$Q_5' \ (4 < q^2 < 8 \ { m GeV}^2)$	will be updated				
$B(B \to K \nu \bar{\nu})$	·11.1 1 . 1				
$B(B \to K^* \nu \bar{\nu})$	will be updated				