High Energy Accelerator Research Organization

Status of the Belle II Detector

Katsuro Nakamura (KEK) on behalf of the Belle II collaboration HINT2016 (Dec. 5, 2016)

HINT2016

KEK

2016/12/5

Belle II Experiment

- SuperKEKB: An e⁺-e⁻ collider with the world highest luminosity, 8.0×10³⁵ cm⁻²s⁻¹. (KEKB: 0.2×10³⁵ cm⁻²s⁻¹)
 - B factory → Flavor factory: A large number of B mesons, D mesons, and τ leptons are produced.
 - Target integrated luminosity: 50 ab⁻¹ (KEKB: 1 ab⁻¹)
- Belle II experiment: Search for new physics beyond the standard model
 - Experimentally clean measurement
 - Full event reconstruction
 - Missing particle measurement, inclusive measurement
 - Start of physics data taking: 2018

KEK in bird's-eye view

HINT2016

Δm_s & Δm_a

15

 $\Delta m_a \& \Delta m_s$

Δm

xcl. at CL > 0.95

2.0

1.5

1.0

sin 2β_{w/}

Achievements on Old B-Factories

Especially, conclusive evidence of KM theory and precise determination of **CKM matrix elements**

-0.5

-1.0

-1.0

-0.5

0.0

0.5

ō

Direct and Indirect Measurement in Flavor Physics

 Observation of new phenomena + precise measurement (indirect measurement) and Discovery of new particle/physics (direct measurement) cooperatively develop the flavor physics.

New Physics Search at Belle II

(Rare B decay and τ LFV at Belle II: Wed. morning session) 2016/12/5

Challenges toward Belle II Experiment

- High beam background
 - Fine segmentation and fast readout \rightarrow occupancy reduction
 - Replacement of detectors
- Improve detection efficiency for neutral particles
 - Larger VXD outer radius \rightarrow Improvement on K_s detection efficiency
 - New scintillators in KLM \rightarrow Improvement on $K_{\rm L}$ detection efficiency
- Smaller Lorentz boost (for lower beam emittance and longer beam life)
 - Smaller VXD inner radius \rightarrow Improvement on vertex position resolution

Belle II Detector Overview

KL and muon detector: Resistive Plate Counter (barrel) Scintillator + WLSF + MPPC (end-caps)

EM Calorimeter: CsI(TI), waveform sampling (barrel) Pure CsI + waveform sampling (end-caps)

electron (7GeV)

Beryllium beam pipe 2cm diameter

Vertex Detector 2 layers DEPFET + 4 layers DSSD

> Central Drift Chamber He(50%):C₂H₆(50%), Small cells, longlever arm, fast electronics

Particle Identification Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (fwd)

positron (4GeV)

- Belle II Acceptance: θ: 17°-150° × φ: 0-2π
- Magnetic field in CDC volume: 1.5 T
- Particle identification
 - Charged hadron ID: TOP, ARICH + (dE/dx) CDC, SVD
 - Electron ID: ECL
 - Muon ID: KLM

SuperKEKB luminosity prospection

- phase-1 (done)
 - Beam commissioning

phase-2 (Jan. 2018)

- Beam BG measurement
- Belle II detector with partial vertex sensors

phase-3 (Dec. 2018)

- Physics running
- Full Belle II detector

Expected numbers of produced particles at 50 ab⁻¹

Process	$\sigma[nb]$	No. events [×10 ⁹]
B₿	1.1	55
qā (q=u,d,s) 2.52	185.45
$\tau^+\tau^-$	0.92	45.95

K_L/Muon Detector (KLM) Upgrade

- Alternating layers of iron plates and detector components.
 - Iron plates for K_L hadron shower and magnetic field return yoke
- In Belle, all were Resistive Plate Chamber (RPC).
- Upgrade for beam BG tolerance:
 - All detectors in endcap and inner 2 layers in barrel were replaced into plastic scintillators.
- Readout electronics is partially installed, and remains are under production.
 - will be ready by the summer 2017.

Barrel (inner 2lyrs) installation completed in Nov. 2013

Endcap installation completed in Oct. 2014

HINT2016

Electromagnetic Calorimeter (ECL) Upgrade

- In Belle: CsI(TI) crystals with PINphotodiode
- Upgrade for beam BG tolerance:
 - CsI(TI) in endcap are replaced with pure CsI.
 - Time constant: $1\mu s \rightarrow 30ns$
 - Waveform sampling analysis in new readout electronics
- Barrel ECL: under cosmic ray commissioning
 - Typical timing resolution < 4.5ns
- Endcap ECL: to be installed
 - BWD: Jan. 2017
 - FWD: Oct. 2017 with ARICH

Installed new ECL readout

HINT2016

Pileup noise suppression due to new electronics

Endcap PID detector (ARICH)

- **Aerogel Ring Imaging Cherenkov (ARICH) detector**
 - readout with 420 HAPDs
- **Cherenkov lights from 2** aerogels with different refraction indices are focused on HAPD surface.
 - π threshold: 0.4 GeV/c
 - *K* threshold: 1.5 GeV/*c*
 - $\theta_{c}(\pi)$: 307 mrad @ 3.5GeV/c
 - $\theta_{c}(\pi)$ - $\theta_{c}(K)$: 30 mrad @ 3.5GeV/c

ARICH

2016/12/5

Aerogel properties

	Aerogel1	Aerogel2
Refractive index	~1.045	~1.055
Transmission length [mm]	40~60	30~50

Hybrid Avalanche Photo Detector

72mm

Endcap PID detector (ARICH) Assembly

- Assembly of ARICH is on-going and will be completed in Mar. 2017.
- Clear ring image of cosmic ray has been confirmed.
- ARICH and FWDendcap ECL will be combined and installed to Belle II on Oct. 2017.

ARICH

2016/12/5

Installed aerogel tiles

Ring image of cosmic ray

Barrel PID detector (TOP)

270 cm

shoton sensors

Korpk

e'

TOP

Quart

2 cm

Quartz

Time of Propagation (TOP) detector

- Path lengths of Cherenkov lights for K/π are different due to different emission angles.
- To identify K/π , measure TOP of ~20 photons with a time resolution < 50 ps (as well as
- TOF). Cherenkov photons detected And Plate PMT (MCP-PMT).
 - 16 detectors, 512 MCP-PMTs

Surface reflection	> 99.90%			
Bulk transmittance	> 98.5%/m			
Flatness	< 6.3um			
Roughness	< 5 Å (RMS)			
Parallelism	< 4 arcsec			
(for largest surfaces				

MCP-PMT Specification

- Small dead region
- Gain > $5x10^{5}$ in 1.5T
- Transit time spread < 40ps
- QE~28% at λ =380nm

Barrel PID detector (TOP) Installation

TOP detector was installed

- Shims inserted to prevent PMT rotation due to magnetic field.
- Detector readiness was confirmed with laser and cosmic ray data taking.

Detector assembly

Moving for installation

Detector installation in Belle II

All detectors were installed

KEK (High Energy Accelerator Research Organization)

Central Drift Chamber (CDC) Upgrade

HINT2016

- Larger outer radius: Improved momentum resolution
 - Belle:863mm → Belle II
 1111mm
- Small cell
 - lower occupancy
 - capacity for higher hit rate

Simulated CDC track reconstruction efficiency

Stable tracking performance even for factor 3 of predicted BG from beam at designed luminosity.

Belle 1200 mm **Belle II** small cell normal cell \cap 00000 10 mm 0 • 0 • 0 18 mm 🗄 6~8 mm 0 10~20 mm CDC 2016/12/5

KEK (High Energy Accelerator Research Organization)

Central Drift Chamber (CDC) Test

Cosmic ray test was performed before CDC installation

- Drift curves were measured
- Excellent hitposition resolution was confirmed.

Central Drift Chamber (CDC) Installation

- CDC detector was installed in Belle II in this Oct.
- Preparation for cosmic ray commissioning is now on-going.

ネ研検出器取りは

ct. 13

Belle II Vertex Detectors

KEK (High Energy Accelerator Research Organization)

Silicon Vertex Detector (SVD)

- SVD ladder consists of DSSDs.
- Material budget: 0.7% X₀ per layer
- Front-end ASIC: APV25
 - originally developed for CMS Si tracker
 - Shaping time: 50ns
 - Radiation hardness: > 1MGy

Chip-on-sensor concept

SVD

 minimize the analog path length (capacitive noise)

Silicon Vertex Detector (SVD)

- SVD ladders under massproduction
 - All Layer-3 ladders already completed.
- SVD will be ready in Dec. 2017.
- **Performance of SVD ladder** is well tested in beam tests.
 - Position resolution consistent with expectation
 - Excellent hit efficiency: > 99%

Assembled ladders in mass-production

Laver

need 10(+2) ladders

need 7(+2) ladders

need 12(+3) ladders

20

Pixel Detector (PXD)

Depleted P-channel FET (DEPFET) pixel sensor

- FET transistor on a fully depleted Si bulk
- Additional n-implant causing a potential minimum below the transistor channel (= internal gate)
 - amplification: ~500 pA/e

Material budget: 0.2% X₀ per layer

small multiple scattering

DEPFET cross section view

PXD property table

DEPFET PXD	L1	L2		
# ladders	8	12		
# pixles/module	768x250	768x250 4.6 x 10 ⁶		
total no. of pixels	3.1 x 10 ⁶			
Pixel size [um ²]	55x50, 60x50	70x50, 85x50		
ladder size [mm ²]	15x136	15x170		
Frame time: 20um, Duty cycle: 1				
HINT2016		21		

Pixel Detector (PXD)

96 sensors out of 172 produced (@ Oct. 2016)

- 40 sensors needed
- 74/96 (87.5%): working sensors (>97.5% pixels)
- 64/96 (66.7%): prime grade sensors (>99% pixels)
- Entire production finished by Dec. 2016
- Production yield better than expected (>50%)

Excellent vertex resolution with PXD+SVD

PXD delivered to KEK by Dec. 2017

DEPFET sensor wafer

produced at MPG-HLL (Munich)

KEK (High Energy Accelerator Research Organization)

Phase-2 VXD beam background study

- Goals of phase-2:
 - SuperKEKB commissioning
 - Confirmation of radiation safe environment for VXD
- In phase-2, detectors for beam background study will be installed in the VXD region.
 - 2 PXD ladders + 4 SVD ladders
 - Dedicated beam BG monitors:
 - Diamond detectors
 - FANGS (Hybrid Si pixel detector with FE-I4)
 - CLAWS (Scintillator+MPPC array)
 - PLUME (Double-sided pixelated CMOS: MIMOSA-26 sensors)

0.8

0.6

0.4

0.2

Belle II Particle Reconstruction

Particle ID relies on likelihood based selection with information from different sub-detectors.

- Electron ID
 - provided by ECL energy deposition
 - Eff. >90% at moderate momentum

Muon ID

- Penetration depth and transverse scattering of the track in KLM
- Eff. ~90-98% above 1GeV/c

Hadron ID

- using combined information of TOP, ARICH, and dE/ dx(CDC, SVD)
- Eff.>90% for momentum > 0.5 GeV/c

Muon ID efficiency

 π mis-id prob. x 10

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

2016/12/5

DAQ for Belle II Detectors

Region of Interest (RoI) data reduction scheme on PXD

- Level-1 trigger: 30kHz in max.
- Event size: (PXD) ~1MB/ev, (Other detectors) ~100kB/ev in total

High Level Trigger (HLT) event rate reduction: by a factor of ~3

- − \sim 30kHz → \sim 10kHz
- Rol PXD data reduction: factor of ~10
 - \sim 1MB → \sim 100kB
- Online data rate @ storage: ~2GB/s

HINT2016

Summary

- The Belle II experiment takes shape!
- Detector construction is on-going.
 - KLM, barrel-ECL, TOP, and CDC have been installed already.
 - endcap-ECL and ARICH will be installed by autumn 2017.

Phase-2 will start Jan. 2018.

- SuperKEKB commissioning
- Survey beam BG in the VXD region
 - without full VXD
- Phase-3 will start Dec. 2018.
 - full Belle II detector

Thanks!

Belle II Collaboration

- 23 countries/regions
- 101 institutions
- 696 collaborators (Oct. 2016)

 $A_{\rm CP}$

 0.009 ± 0.025

 0.047 ± 0.026

 -0.093 ± 0.015

 -0.12 ± 0.11

Difference in direct CPV $B \rightarrow K\pi$

0	esn't d	change	e by <mark>u</mark> <	-> <mark>d</mark> swap	oping.
		b p	enguir	n diagrar	n
đ	K+, π^+	Б		ر م	Ī
u	0	B+. B ⁰		and U	K+, π+
А	π^0, π^-	_ , _	9 1	ū	π^0, π^-

d electroweak penguin z, d, \bar{d} , π^0

New physics can be coupled here.

HINT2016

Magnetic Field Survey

Ratio btw. measurement and simulation

Hall probe

- Full 3D mapper
- 34 hall probes on carbon fiber arms

 Overall reasonable agreement between data and simulation
 Data can be used for further tune of the simulation to reach 0.1%

goal