

The Belle II Experiment

James Kahn

Ludwig Maximilians Universität München DFG cluster of excellence "Origin and Structure of the Universe"

2016-08-21

- Motivation
- SuperKEKB
- Detector
- Software
- Milestones

 Collaboration formed in 2009 following success of Belle experiment:

- Collaboration formed in 2009 following success of Belle experiment:
 - Confirmed Kobayashi–Maskawa–mechanism (Nobel prize 2008).

- Collaboration formed in 2009 following success of Belle experiment:
 - Confirmed Kobayashi–Maskawa–mechanism (Nobel prize 2008).
 - UT parameters, heavy flavour spectroscopy, CPV, rare B decays, etc.

- Collaboration formed in 2009 following success of Belle experiment:
 - Confirmed Kobayashi–Maskawa–mechanism (Nobel prize 2008).
 - UT parameters, heavy flavour spectroscopy, CPV, rare B decays, etc.
- New physics searches (Sources of CPV, (semi-)leptonic decay, LFV, etc.)

- Collaboration formed in 2009 following success of Belle experiment:
 - Confirmed Kobayashi–Maskawa–mechanism (Nobel prize 2008).
 - UT parameters, heavy flavour spectroscopy, CPV, rare B decays, etc.
- New physics searches (Sources of CPV, (semi-)leptonic decay, LFV, etc.)
- Unique advantages of B-factory:

- Collaboration formed in 2009 following success of Belle experiment:
 - Confirmed Kobayashi–Maskawa–mechanism (Nobel prize 2008).
 - UT parameters, heavy flavour spectroscopy, CPV, rare B decays, etc.
- New physics searches (Sources of CPV, (semi-)leptonic decay, LFV, etc.)
- Unique advantages of B-factory:
 - Experimentally clean.

- Collaboration formed in 2009 following success of Belle experiment:
 - Confirmed Kobayashi–Maskawa–mechanism (Nobel prize 2008).
 - UT parameters, heavy flavour spectroscopy, CPV, rare B decays, etc.
- New physics searches (Sources of CPV, (semi-)leptonic decay, LFV, etc.)
- Unique advantages of B-factory:
 - Experimentally clean.
 - Full event reconstruction/tagging.

- Collaboration formed in 2009 following success of Belle experiment:
 - Confirmed Kobayashi–Maskawa–mechanism (Nobel prize 2008).
 - UT parameters, heavy flavour spectroscopy, CPV, rare B decays, etc.
- New physics searches (Sources of CPV, (semi-)leptonic decay, LFV, etc.)
- Unique advantages of B-factory:
 - Experimentally clean.
 - Full event reconstruction/tagging.
 - Missing particles, inclusive measurements, unique phase space.

- Collaboration formed in 2009 following success of Belle experiment:
 - Confirmed Kobayashi–Maskawa–mechanism (Nobel prize 2008).
 - UT parameters, heavy flavour spectroscopy, CPV, rare B decays, etc.
- New physics searches (Sources of CPV, (semi-)leptonic decay, LFV, etc.)
- Unique advantages of B-factory:
 - Experimentally clean.
 - Full event reconstruction/tagging.
 - Missing particles, inclusive measurements, unique phase space.
 - Sensitive to mass ranges above direct production.

- Collaboration formed in 2009 following success of Belle experiment:
 - Confirmed Kobayashi–Maskawa–mechanism (Nobel prize 2008).
 - UT parameters, heavy flavour spectroscopy, CPV, rare B decays, etc.
- New physics searches (Sources of CPV, (semi-)leptonic decay, LFV, etc.)
- Unique advantages of B-factory:
 - Experimentally clean.
 - Full event reconstruction/tagging.
 - Missing particles, inclusive measurements, unique phase space.
 - Sensitive to mass ranges above direct production.
- Current standing:
 - 649 Members, 99 institutes, 22 countries (Aug 2016)
 - First data: 2018

- High luminosity \rightarrow high hit-rate.
- ► 14mm and 22mm from beampipe \rightarrow high occupancy.

- High luminosity \rightarrow high hit-rate.
- ► 14mm and 22mm from beampipe \rightarrow high occupancy.
- Ladder structure:
 - Inner layer: 8 modules, 3.072M pixels.
 - Outer layer: 12 modules, 4.608M pixels.

- High luminosity \rightarrow high hit-rate.
- ► 14mm and 22mm from beampipe \rightarrow high occupancy.
- Ladder structure:
 - Inner layer: 8 modules, 3.072M pixels.
 - Outer layer: 12 modules, 4.608M pixels.
- DEPleted Field Effect Transistor (DEPFET):

- High luminosity \rightarrow high hit-rate.
- ► 14mm and 22mm from beampipe \rightarrow high occupancy.
- Ladder structure:
 - Inner layer: 8 modules, 3.072M pixels.
 - Outer layer: 12 modules, 4.608M pixels.
- DEPleted Field Effect Transistor (DEPFET):
 - ▶ 50µm thin.
 - Air–cooled.
 - Radiation hard.
- Still in production (lithography in progress).

• Four ladder layers: 38, 80, 115, 140*mm*.

- Four ladder layers: 38, 80, 115, 140*mm*.
- Three sizes of DSSDs used for outer, inner, forward layers.

- ▶ Four ladder layers: 38, 80, 115, 140mm.
- Three sizes of DSSDs used for outer, inner, forward layers.
- ► Excellent timing resolution (~ 2 3ns) → complements PXD.

- Four ladder layers: 38, 80, 115, 140*mm*.
- Three sizes of DSSDs used for outer, inner, forward layers.
- ► Excellent timing resolution (~ 2 3ns) → complements PXD.
- Undergone beam tests at DESY.

► ~ 51,500 sense wires inside 1.5T magnetic field.

UNIVERSITÄT UNIVERSITÄT

- ► ~ 51,500 sense wires inside 1.5T magnetic field.
- Key roles:

LUDWIG-

LMU

- 1. Reconstruct charged tracks with precision momentum measurements.
- 2. Particle identification using measurements of $\frac{dE}{dx}$.
- 3. Trigger for charged particles.

MAXIMILIANS-**CENTRAL DRIFT CHAMBER**

- \blacktriangleright ~ 51,500 sense wires inside 1.5T magnetic field.
- Key roles:

LUDWIG-

UNIVERSITÄT

- 1. Reconstruct charged tracks with precision momentum measurements.
- 2. Particle identification using measurements of $\frac{dE}{dr}$
- 3. Trigger for charged particles.
- Moving into final position + cosmic ray testing ongoing.

LMU

• Particle identification in barrel region.

- Particle identification in barrel region.
- Sixteen modules, each containing:
 - ► Two 2.7*m* long quartz bars.
 - A spherical mirror.
 - An expansion prism.
 - An array of photo-detectors.

- Particle identification in barrel region.
- Sixteen modules, each containing:
 - Two 2.7*m* long quartz bars.
 - A spherical mirror.
 - An expansion prism.
 - An array of photo-detectors.
- Cherenkov ring reconstructed in 3D from time and the x – y position.

- Particle identification in barrel region.
- Sixteen modules, each containing:
 - Two 2.7*m* long quartz bars.
 - A spherical mirror.
 - An expansion prism.
 - An array of photo-detectors.
- Cherenkov ring reconstructed in 3D from time and the x – y position.
- TOP installed undergoing background tests.

TIME OF PROPAGATION DETECTOR

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

LMU

Particle identification in forward end-cap.

- Particle identification in forward end-cap.
- Components:

- Particle identification in forward end-cap.
- Components:
 - Aerogel radiator → produces Cherenkov photons.
 - Expansion volume.
 - 2D array of photon detectors (420 Hybrid Avalanche Photo Detectors).
 - Read-out system for photon detectors.

- Components:
 - ► Aerogel radiator → produces Cherenkov photons.
 - Expansion volume.
 - 2D array of photon detectors (420 Hybrid Avalanche Photo Detectors).
 - Read-out system for photon detectors.
- Focusing constructed to seperate K and π photons across most of their momentum range.

- Components:
 - ► Aerogel radiator → produces Cherenkov photons.
 - Expansion volume.
 - 2D array of photon detectors (420 Hybrid Avalanche Photo Detectors).
 - Read-out system for photon detectors.
- Focusing constructed to seperate K and π photons across most of their momentum range.
- Partially installed, cosmic ray tests ongoing.

Hamamatsu HAPD

LMU

 Reuse barrel crystals from Belle (new waveform sampling electronics).

- Reuse barrel crystals from Belle (new waveform sampling electronics).
- Refurbished end-cap crystals (CsI(TI) \rightarrow CsI)

ELECTROMAGNETIC CALORIMETER

- Reuse barrel crystals from Belle (new waveform sampling electronics).
- ▶ Refurbished end-cap crystals (CsI(TI) \rightarrow CsI)
- Roles:

LUDWIG-MAXIMILIANS-UNIVERSITÄT

MÜNCHEN

- Detect photons with precision measurements.
- Identify electrons.
- Help detect K_L^0 together with the KLM.

ELECTROMAGNETIC CALORIMETER

- Reuse barrel crystals from Belle (new waveform sampling electronics).
- ▶ Refurbished end-cap crystals (CsI(TI) \rightarrow CsI)
- Roles:

LUDWIG-MAXIMILIANS-

UNIVERSITÄT

- Detect photons with precision measurements.
- Identify electrons.
- Help detect K_L^0 together with the KLM.
- Hardware tests carried out on crystals Electronics still in contruction/testing.

 Alternating layers of iron plates and detector components.

- Alternating layers of iron plates and detector components.
- Iron plates:
 - *K_L* shower hadronically.
 Flux return for magnet.

- Alternating layers of iron plates and detector components.
- Iron plates:
 - K_L shower hadronically.
 - Flux return for magnet.
- Replaced end-cap and inner-most barrel RPCs with scintillators.

- Alternating layers of iron plates and detector components.
- Iron plates:
 - ► *K_L* shower hadronically.
 - Flux return for magnet.
- Replaced end-cap and inner-most barrel RPCs with scintillators.
- Barrel (End-cap) installed in 2013 (2014).

- Alternating layers of iron plates and detector components.
- Iron plates:
 - ► *K_L* shower hadronically.
 - Flux return for magnet.
- Replaced end-cap and inner-most barrel RPCs with scintillators.
- Barrel (End-cap) installed in 2013 (2014).
- Currently undergoing commissioning/cosmic ray testing.

• Rewritten (mostly) from scratch.

- Rewritten (mostly) from scratch.
- Standardise common processes.

- Rewritten (mostly) from scratch.
- Standardise common processes.


```
# Load up a data set to analyse
inputMdstList('B2D0pi0_mdst.root')
# Create "pi0:all" and "pi0:good" ParticleLists
# from ECL clusters
goodPi0()
# Reconstruct D0 -> pi0 pi0 decay.
# Keep only candidates with: 1.7 < M(pi0pi0) < 2.0 GeV
reconstructDecay('D0:pi0pi0 -> pi0:good pi0:good',
                 1.7 \le M \le 2.0
# Reconstruct B0 -> D0 pi0 decay and keep only candidates with:
# Mbc > 5.24 GeV and -1 < \text{Delta E} < 1 \text{ GeV}
reconstructDecay('B0:all -> D0:pi0pi0 pi0:good',
                 '5.24 < Mbc < 5.29 and abs(deltaE) < 1.0')
# Perform MC matching (MC truth asociation)
matchMCTruth('B0:all')
# Write out the flat ntuple
ntupleFile('B02D0Pi0-Reconstruction.root')
ntupleTree('b0', 'B0:all', toolsB0)
# Process the events
process(analysis_main)
```


- Rewritten (mostly) from scratch.
- Standardise common processes.
- ► Events independent → trivial parallelisation.


```
# Load up a data set to analyse
inputMdstList('B2D0pi0 mdst.root')
# Create "pi0:all" and "pi0:good" ParticleLists
# from ECL clusters
goodPi0()
# Reconstruct D0 -> pi0 pi0 decay.
# Keep only candidates with: 1.7 < M(pi0pi0) < 2.0 GeV
reconstructDecay('D0:pi0pi0 -> pi0:good pi0:good',
                 '1.7 \leq M \leq 2.0'
# Reconstruct B0 -> D0 pi0 decay and keep only candidates with:
# Mbc > 5.24 GeV and -1 < \text{Delta E} < 1 \text{ GeV}
reconstructDecay('B0:all -> D0:pi0pi0 pi0:good',
                 15.24 \le Mbc \le 5.29 and abs(deltaE) \le 1.0
# Perform MC matching (MC truth asociation)
matchMCTruth('B0:all')
# Write out the flat ntuple
ntupleFile('B02D0Pi0-Reconstruction.root')
ntupleTree('b0', 'B0:all', toolsB0)
# Process the events
process(analysis_main)
```


- Rewritten (mostly) from scratch.
- Standardise common processes.
- ► Events independent → trivial parallelisation.
- CVMFS mountable central builds OR ~ 1 min binaries setup.


```
# Load up a data set to analyse
inputMdstList('B2D0pi0 mdst.root')
# Create "pi0:all" and "pi0:good" ParticleLists
# from ECL clusters
goodPi0()
# Reconstruct D0 -> pi0 pi0 decay.
# Keep only candidates with: 1.7 < M(pi0pi0) < 2.0 GeV
reconstructDecay('D0:pi0pi0 -> pi0:good pi0:good',
                 1.7 \le M \le 2.0
# Reconstruct B0 -> D0 pi0 decay and keep only candidates with:
# Mbc > 5.24 GeV and -1 < \text{Delta E} < 1 \text{ GeV}
reconstructDecay('B0:all -> D0:pi0pi0 pi0:good',
                 '5.24 < Mbc < 5.29 and abs(deltaE) < 1.0')
# Perform MC matching (MC truth asociation)
matchMCTruth('B0:all')
# Write out the flat ntuple
ntupleFile('B02D0Pi0-Reconstruction.root')
ntupleTree('b0', 'B0:all', toolsB0)
# Process the events
process(analysis_main)
```


- Rewritten (mostly) from scratch.
- Standardise common processes.
- ► Events independent → trivial parallelisation.
- CVMFS mountable central builds OR ~ 1 min binaries setup.
- First full release: 08.2017

'5.24 < Mbc < 5.29 and abs(deltaE) < 1.0')

```
# Perform MC matching (MC truth asociation)
matchMCTruth('B0:all')
```

```
# Write out the flat ntuple
ntupleFile('B02D0Pi0-Reconstruction.root')
ntupleTree('b0', 'B0:all', toolsB0)
```

```
# Process the events
process(analysis_main)
```


 Phase 1 (Feb 2016): Beam commissioning + beam background measurements

- Phase 1 (Feb 2016): Beam commissioning + beam background measurements
 - Details in next talk.

- Phase 1 (Feb 2016): Beam commissioning + beam background measurements
 - Details in next talk.

 Phase 2 (Dec 2017): Detector in place without VXD

- Phase 1 (Feb 2016): Beam commissioning + beam background measurements
 - Details in next talk.

 Phase 2 (Dec 2017): Detector in place without VXD

 Phase 3 (Nov 2018): Physics run

► New physics motivation for new B-factory.

- New physics motivation for new B-factory.
- SuperKEKB to set new world record instantaneous luminosity. $8 \times 10^{35} cm^{-2} s^{-1}$ $50ab^{-1}$

- ► New physics motivation for new B-factory.
- SuperKEKB to set new world record instantaneous luminosity. $8 \times 10^{35} cm^{-2} s^{-1}$ $50ab^{-1}$
- Detector component construction/installation ongoing.

- ► New physics motivation for new B-factory.
- SuperKEKB to set new world record instantaneous luminosity. $8 \times 10^{35} cm^{-2} s^{-1}$ $50ab^{-1}$
- Detector component construction/installation ongoing.
- Software still in developement \rightarrow mid-2017 full release.

- ► New physics motivation for new B-factory.
- SuperKEKB to set new world record instantaneous luminosity. $8 \times 10^{35} cm^{-2} s^{-1}$ $50 ab^{-1}$
- Detector component construction/installation ongoing.
- Software still in developement \rightarrow mid-2017 full release.
- End–2018: Data taking to begin.

BACKUP

LUDWIG- MAXIMILIANS- UNIVERSITÄT MÜNCHEN BELLE II + I	-НСв	
Belle II	Overlap	LHCb
	► CPV	
 Missing particles 	Semi–leptonic	 Large baryonic samples
Inclusive measurements	► EWP	
	 Charm physics 	 Deccays to visible particles.
► LFV	 Low–multiplicity signatures. 	

Belle II is the upgraded Belle detector. Most components have been upgraded. The key changes are:

- The old silicon strip detector immediately outside the beam pipe will be replaced with a two-layer pixel detector.
- The remaining silicon strip detector is to be extended to have a larger radius than in Belle.
- The readout of the silicon strip detector will be changed from one based on the VA1TA chip to one based on the APV25 chip featuring a decreased shaping time.
- The central drift chamber, the primary tracking device, will have a larger volume and smaller cell sizes than in Belle.
- Particle identification is to be performed by entirely new devices using erenkov imaging with faster read-outs than in Belle.
- ► The end-cap scintillator crystals (CsI(T1)) in the electromagnetic calorimeter will be replaced with faster, more radiation tolerant pure CsI crystals, and new electronics will be used.
- The end–cap and inner layers of the K_L and μ detector are to be replaced with scintillators.

1. Particle hits \rightarrow electron-hole pairs produced.

- 1. Particle hits \rightarrow electron-hole pairs produced.
- 2. Holes drift to the p+ back contact. Electrons accumulate in 'internal gate'.

- 1. Particle hits \rightarrow electron-hole pairs produced.
- 2. Holes drift to the p+ back contact. Electrons accumulate in 'internal gate'.
- Current p+ source → p+ drain through FET modulated by FET gate and field from electrons in 'internal gate'.

- 1. Particle hits \rightarrow electron-hole pairs produced.
- 2. Holes drift to the p+ back contact. Electrons accumulate in 'internal gate'.
- Current p+ source → p+ drain through FET modulated by FET gate and field from electrons in 'internal gate'.
- 4. Current is measured and amplified as it's carried away.

- 1. Particle hits \rightarrow electron-hole pairs produced.
- 2. Holes drift to the p+ back contact. Electrons accumulate in 'internal gate'.
- Current p+ source → p+ drain through FET modulated by FET gate and field from electrons in 'internal gate'.
- 4. Current is measured and amplified as it's carried away.
- 5. n+ clear pulsed to 'internal gate' removes collected electrons and signal charge.

- 1. Particle hits \rightarrow electron-hole pairs produced.
- 2. Holes drift to the p+ back contact. Electrons accumulate in 'internal gate'.
- Current p+ source → p+ drain through FET modulated by FET gate and field from electrons in 'internal gate'.
- 4. Current is measured and amplified as it's carried away.
- 5. n+ clear pulsed to 'internal gate' removes collected electrons and signal charge.
- 6. Device is now reset and ready again.

			2017			2018 201					
	1 2 3 4 5	6 7 8 9 10	11 12 1 2 3	4 5 6 7	8 9 10 11	12 1 2 3 4	5 6 7 8 9 10	11 12 1 2 3			
Global Operation	Phase 1 (5mg	Summer Shutdown		Sun Shu	nmer Itdown	Phase 2 (5mo)	Summer Shutdown	Physics Run			
machine time per JFY	2		3			5		6			
Belle roll-out/in											
		phase 1 to 2					phase 2 to 3				
Global Position	pit		On Beam	Line		On Beam Line	,	On Beam Line			
TOP			•								
Solenoid field measurement			GCR -VF	details to be							
CDC		CDC	worked ou	t)							
ECL ARICH Ecap VXD			BW D	eni to Tsi ARIC cor	GCR -V (details to be worked	CR	VXD GCF				
Cryogenics (for Solenoid)		Me	-VF/Measu	urement	-V/Measu	r Beam	GCF	Beam			
	Place		CO2 pipe for BEAST from manifold								
IBBelle, CO2	IBBelle		to dock < IBBelle	9							
ready on site		• CDC	BP2								
		• TOP		ARICH	• PXD	SVD					
		• ECL	BEAST	VXD		• VXD					
COMP											

	2016					2017						2018 201						2019										
	1	2 3	4 5	6 7	8	9 10) 11	12	1 2	23	4	5	6	78	9	10 1	1 1	2 1	2	3	4	5 (67	8	9 10	11.1	2 1	2 3
Global Operation	F	hase	1 (5mo	Su Sh	immei iutdow	r vn							s s	umm hutde	ier own		P	hase	2 (5	mo)			Su Sh	imme iutdov	r vn	Phys	ics R	łun
machine time per JFY		2								3										5								6
Belle roll-out/in																												
				ph	ase 1	to 2															P	hase	e 2 t	o 3				
Global Position	pit								On B	eam I	Line							Or	Bea	am Li	ne						Or	i Beam ie
TOP							•																					
Solenoid field measurement									GCR	-VF (deta	ails to	be be															
CDC				CDC					worke	ed ou	t)																	
ECL ARICH Ecap VXD						eni to Tsi	BW		GCR			e ti AR	n si IC ci	or FW E	GCF (det to be work out)	R-V ails e ked			CR				VXE		GCF			
Cryogenics (for Solenoid)				Me					VF/N	leasu	urem	nent			-V/N	leas	ur B	eam							GCF	Bean	n	
IBBelle, CO2	Plac for IBBe	e					CC pip BE froi ma to (02 AST m anifole dock	d IB	Belle	9																	
ready on site					•	C		•	BP2																			
					• 0	P						 AR 	ICF			• PXI	D 🔸	SVD										
					E	CL			BEA	AST \	VXD							1	٧X	D								
COMP																												

1 2 3 4 5 6 7 8 9 10 11 12 1 12 3 4 5 6 7 8 9 10 11 12 12 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 </th <th></th> <th>2016</th> <th></th> <th>2017</th> <th></th> <th></th> <th colspan="5">2018</th>		2016		2017			2018				
Global Operation Phase 1 (5mo) Summer		1 2 3 4 5 6 7	8 9 10 11 12	1 2 3 4 5 6 7	8 9 10 11	12 1 2 9 4	5 6 7 8 9 10	11 12 1 2 3			
machine time per JFY 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Global Operation	Sur Phase 1 (5mo) Shu	nmer Itdown	Su	mmer utdown	Phase 2 (5mo)	Summer Shutdown	Physics Run			
Belle roll-out/in phase 1 to 2 phase 2 to 3 Global Position pit On Beam Line Ine TOP Solenoid field measurement GCR -VF (details to be GCR -VI (details to be Ine Ine <tdine< td=""> Ine Ine</tdine<>	machine time per JFY	2		3				6			
Global Position pit On Beam Line On Beam Line On Beam Line On Beam Line Ditemation Solenoid field measurement CCC CCCC CCC CCCC	Belle roll-out/in										
Global Position pit On Beam Line On Beam Line On Beam Line TOP TOP GCR -VF (details to be GCR -VF (details to be GCR -VF (details to be Solenoid field measurement CDC CDC Worked out) ECL CDC Tot GCR -VF (details to be ARICH Tot Tot GCR -VF (details to be Ecq Tot Tot GCR -VF (details to be VXD GCR Tot GCR -VF (details to be VXD GCR GCR GCR Cryogenics (for Solenoid) Me GCR GCR Place GCC GCR GCR Beam for manifold to dock IBBelle ready on site OD BP2 GOUBE GCR YXD		pha	se 1 to 2				phase 2 to 3				
TOP OP	Global Position	pit		On Beam Line		On Beam Line		On Beam Line			
Solenoid field measurement CDC GCR -VF (details to be worked out) CDC CDC CDC ECL BW BV ARICH CR CR Ecap BW BV VXD CR VAD Cryogenics (for Solenoid) Me Place GCR for Mail Place For for BBelle CO2 BBelle CO3 BBelle CO4 BC2	TOP										
CDC CDC Worked out) Worked out) PV end	Solenoid field measurement			GCR -VF (details to be							
ECL BV BV GCR -V ARICH Tot to be Ecap VXD GCR VXD VXD GCR GCR GCR Cryogenics (for Solenoid) Me GCR GCR Place GC -VF/Measurement -V/Measur Beam File CC2 BBelle GCR Beam IBBelle, CO2 IBBellé DC BP2 GCN GCR VXD SVD	CDC	CDC		worked out)							
Cryogenics (for Solenoid) Me -VF/Measurement -V/Measur Beam GCR Beam Place C2 pipe for BEAST for manifold to dock 4 IBBelle ready on site	ECL ARICH Ecap VXD			eri to Tst ARIC co BE GCR	GCR -V (details to be worked W out) GCR	CR	VXD				
ECL BEAST VXD VXD	IBBelle, CO2 ready on site	Place for IBBelk	CO2 pipe fo BEAS from manifo to doc	VF/Measurement	-v/Measur	SVD	GCR	Beam			
COMP			ECL	BEAST VXD		VXD					
	COMP										

		2016		2017			2018				
	1 2 3 4	5 6 7 8 9 1	0 11 12 1 2	3 4 5 6 7	8 9 10 11	12 1 2 2 4	5 6 7 8	9 10 11 12 1 9 3			
Global Operation	Phase 1 (5	Summer mo) Shutdown		Sum	mer down	Phase 2 (5mo)	Summer Shutdow	n Physics Run			
machine time per JFY	2			3				0			
Belle roll-out/in											
		phase 1 to 2				pl	nase 2 to 3				
Global Position	pit		On Be	am Line		On Beam Line		On Beam Line			
TOP			•								
Solenoid field measurement			GCR	-VF (details to be							
CDC		CDC	worke	d out)							
ECL ARICH Ecap VXD		to Teu	BW D F GCR	en to Tst ARIC cor BE	GCR -V (details to be worked out) GCR	CR	VXD	GCR			
Cryogenics (for Solenoid)		Me	-VF/M	easurement	-V/Measur	Beam		GCR Beam			
IBBelle, CO2	Place for IBBelle		CO2 pipe for BEAST from manifold to dock IB	Belle							
ready on site		• DC	• BP2								
		• OP		ARICH	PXD	• SVD					
		ECL	BEA	ST VXD		VXD					
COMP											

		2016	201	7	2018 201					
	1 2 3 4 5	6 7 8 9 10 11 1	12 1 2 3 4 5 6	7 8 9 10 11 12	2 1 2 3 4	5 6 7 8 9 10 11	12 1 2 3			
Global Operation	Phase 1 (5mc	Summer Shutdown	5	Summer Shutdown P	hase 2 (5mo)	Summer Shutdown Phy	vsics Run			
machine time per JFY	2		3		5		6			
Belle roll-out/in										
		phase 1 to 2				phase 2 to 3				
Global Position	pit		On Beam Line		On Beam Line		On Beam Line			
TOP										
Solenoid field measurement			GCR -VF (details to be							
CDC		CDC	worked out)							
ECL ARICH Ecap VXD		en to Tsu BW	en to Tex ARIC o I	GCR -V (details to be or worked FW out)	CR	VXD GCR				
Cryogenics (for Solenoid)		Ме	GCR -VF/Measurement	GCR -V/Measur B	eam	GCR Bea	am			
IBBelle, CO2	Place for IBBelle	CO2 pipe BEA from to do	r for ST book ≰IBBelle							
ready on site		CDC	BP2							
		TOP	ARICH	PXD 🔮	SVD					
COMP		ECL			VAD.					
COMP										