

The (i)TOP Detector for the **Buyer 1995 The (i) TOP Detector for the** *Belle II* **Experiment**

Alan Schwartz University of Cincinnati

38th International Conf. on High Energy Physics Chicago, Illinois USA August 6, 2016

u *overview*

- u *optics*
- u *mechanical & electronics*
- **first commissioning results**
- expected performance

Belle II_ _ iTOP Principle of Operation

Belle II_ _ Optical Components: synthetic fused silica (quartz)

Nominally 100-150 reflections off large top and bottom faces

Bars: medium to generate Cherenkov radiation. Two bars of dimensions 2 x 45 x 125 cm3 are glued together to make a "long bar" of length 2.5 m.

Mirror: to focus Cherenkov photons onto PMTs, thus improving imaging. Dimensions are 2 x 45 x 10 cm3. Mirrors are spherical with focal length of 3.25 m.

Prism: to expand the image of Cherenkov cone, improving resolution and reducing ambiguities. Dimensions are 2 x 45 x 10 cm3; angle of tilted fact is 18.1 degrees.

Belle II_ _ Fabricating quartz bars: flatness is critical $\langle\cdot,\cdot\rangle$ tness is crit

Interferograms from metrology report:

S1 peak-to-peak: 5.3 µ*m (< 6.3* µ*m) S2 peak-to-peak: 4.6* µ*m (< 6.3* µ*m)*

Angle of tilted face. Specification: 18.07 ± 0.04 deg. (±144 arcsecs)

*A.J. Schwartz**ICHEP 2016, 6 August 2016* **6** [√]1 + ^α² [−] ²*ⁿ*

3 types:

- *bar to bar*
- *bar to prism*
-

Alignment and Gluing:

- *adjust surfaces positions using laser displacement sensor and micrometers*
- *adjust surfaces angles using autocollimator and micrometers*
- *insert shims, tape joint and repeat steps 1, 2*
- *apply epoxy (EPOTEK 301-2) to joint*

Belle II_ **Moving Optics to Quartz Bar Box (QBB)**

Vacuum-based lifting jig is used to move fully glued optics to QBB assembly table:

Quartz Bar Box is built up around optics: *Quartz Bar Box is built up around optics*:

Fixing outer honeycomb panel to side rails with panel preloaded (to load buttons)

top honeycomb panel

Prism Enclosure: provides access for PMTs and readout electronics

Belle II_ **Photon Detection: Hamamatsu PMTs** $\sqrt{1-\frac{1}{\sqrt{1$ – \bm{B} elle $\bm{\mathit{\Pi}}$, the magnetic field of $\bm{1}$

Hamamatsu SL-10 Multi-Channel-Plate PMTs:

- *>5-year R&D effort at Nagoya University*
- *high gain to detect single photons*
- *excellent timing: TTS < 50 ps*
- *good QE: 28% on average*
- good segmentation: 16 anodes/tube: 5.3 x 5.3 mm²
• works in a 1.5 T magnetic field
- *works in a 1.5 T magnetic field*

- *All PMTs tested; those with QE < 24% are rejected*
- *32 tubes/module x 16 modules = 512 tubes needed (8192 channels)*
- *"Conventional" PMTs have lifetimes 0.3-1.8 C/cm2* ⇒ *will need to be changed @ ~20 ab-1 (44% of tubes). Next geeration (ALD) PMTs are satisfactory.*

1 **1 We have a set of the Vacuum chuck to align the PMT faces** 2 RTV silicon rubber to hold the PMTs

> Silicon rubber TSE3032 (before curing) to be filled between the PMTs and the wavelength cut filter **Askfordules**

PMT module completed

2 PMT modules mounted to prism with a "cookie" (+oil):

Front-end electronics based on a custom 8-channel waveform-sampling ASIC:

boardstack: *boardstack: ASICs are mounted in "Carrier boards," and 8 Carriers + controller/HV/connector boards = 1*

*A.J. Schwartz**ICHEP 2016, 6 August 2016* **12**

link receiver cars

Installing one of 16 modules into "Roman arch" configuration:

All 16 modules installed:

Test modules with cosmic rays, using simple scintillator paddle trigger:

(no tracking yet available, but will be very soon)

Both distributions are in reasonable agreement with MC simulations; other slots look similar

Monte Carlo simulation: $e^+e^- \rightarrow \overline{c}c$ (generic):

Monte Carlo simulation: $D^{*+} \rightarrow D^0 \pi^+$, $D^0 \rightarrow K^- \pi^+$:

*A.J. Schwartz**ICHEP 2016, 6 August 2016* **16**

9

- *A new type of particle identification detector has been built: a Time-of-Propagation counter with imaging. The construction took approximately 18 months.*
- *The detector is now fully installed in the Belle II solenoid. Electronics are cabled, and detector is being commissioned with cosmic rays.*
- *We are uncovering issues with interfacing to the data acquisition system, and issues with firmware running in the front-end readout boards. These are being debugged.*
- *We expect performance similar to or better than that achieved in Belle, but at much higher luminosity and background rates.*
- *The Belle II experiment is scheduled to take first commissioning data in 2017, and first real data in 2018. All detector systems are (more-or-less) on schedule.*

Extra Slides

Mirror does two tasks:

- *parallel rays get focused to a single point*
	- [⇒] *removes bar thickness*
- *non-parallel rays are focused to different points*
- [⇒] *possibly allows to make a correction for chromatic dispersion.*

Belle II_ _ Limiting issue: chromatic dispersion

$$
v = \frac{c}{n} \begin{cases} \text{phase velocity}: \text{n} = \sqrt{\frac{\epsilon \mu}{\epsilon_0 \mu_0}}\\ \text{group velocity}: \text{n}_\text{g} > \text{n} \end{cases}
$$

$$
n_g(\lambda) \;\; = \;\; n(\lambda) - \lambda \left(\frac{dn}{d\lambda} \right)
$$

^c tan ^c ! *From* λ *= 300-500 nm:* , where $\mathcal{F}_{\mathcal{F}}$ is a subset of $\mathcal{F}_{\mathcal{F}}$, where $\mathcal{F}_{\mathcal{F}}$

- n_a ranges from 1.50-1.56 $effect = 4x$ large • *ng ranges from1.50-1.56; a 4% effect = 4x larger than the 1% difference of* π*/K* Δ*t*
- \overline{a} (coming (i) \bullet n ranges from 1.46-1.49 (Corning
7980 data sheet) *n ranges from 1.46-1.49 (Coming*
7980 data sheet) • *ⁿ ranges from1.46-1.49 (Corning*
- **Typical Weighted Values** ⇒*ultimate limit to performance of* **TOP counter)** $\qquad \qquad$ $\qquad \qquad$ *this type of detector (a long*

Belle II_ \leq *Fabricating quartz bars: metrology report*

Final metrology report:

Belle II_ _ Testing Bars (transmission, internal reflection)

Step b: Measurement of coefficient of total internal reflection of bars [SLAC-PUB-9735 (2003)]

N is the number of reflections inside bar, Λ *is the attenuation length of quartz (>1000m @* λ*=530 nm), L* is bar length (125 cm), h is bar height (2.0 cm). R_0 and R_1 are measured or calc. via Fresnel eqs.

 $Button$ *heights must match quartz profile:*

Module 01-02

Module 03-

Belle II_ _ Measuring button heights (must match quartz profile) ¹³ \sum Measuring button heights (η

Belle II_ _ Front-end electronics: testing boardstacks $\sum_{i=1}^n$ is the photon laser testingle-photon laser testingle-photon laser testing $\sum_{i=1}^n$

Test PMT channels with laser, record cincle photon hit times, ecloulate time singre priotori nit times, calculate time
difference w/r/t reference pulse, plot *Indial initially we arease with the model of the residuals w/r/t known time difference: single photon hit times, calculate time*

Testing all boards, excellent yield:

Belle II_ _ Super-KEKB and Detector schedule

