

Status of SuperKEKB commissioning and Belle II detector construction

Peter M. Lewis on behalf of the Belle II Collaboration *University of Hawai`i at Manoa*

5 August 2016 ICHEP Detector R&D and Performance session

Belle/KEKB

The *B*-factory at KEK (Tsukuba, Ibaraki, Japan)

- Targeted *CP*-violation using a huge number of *B* meson pairs
- Operated from **1999 to 2010**
- The KEKB accelerator delivered **over 1ab**⁻¹ to the Belle detector, a huge success (mostly at Y(4S) resonance)
- Along with BaBar, **confirmed Kobayashi and Maskawa theories** about *CP* asymmetries in *B* decays, directly leading to 2008 Nobel Prize
- Collected additional unique datasets at Y(1S), Y(2S), Y(5S) resonances, leading to **unexpectedly rich** additional results (some shown this week)

SuperKEKB

The super *B*-factory at KEK (2018 start)

- A planned 40-fold increase in luminosity over KEKB (target: 8x10³⁵ cm⁻²s⁻¹ instantaneous, **50ab⁻¹** integrated), due to major upgrades:
 - "Nano-beam" scheme (below)
 - Doubled beam currents
 - (large number of upgrades to RF, magnet, vacuum, etc. systems)

3

SuperKEKB is the next luminosity frontier

Belle II major upgrades

KL and muon detector: Resistive Plate Counter (barrel) Scintillator + WLSF + MPPC (end-caps)

Belle II at ICHEP: Detectors:

DEPFET: L. Andricek, Poster 8th 18:30 SVD: A. Paladino, Detector 4th 17:00 EMC: Y. Jin, Poster 6th 18:00 iTOP: A. Schwartz, Detector 6th 14:30 iTOP: K. Inami, Poster 6th 18:00 CPU: M. Schram, Computing 4th 12:50

Physics:

Prospects: B. Fulsom, Flavor 5th 14:30 Dark: G. Inguglia, BSM 4th 17:40 Bottomonia: K. Miyabayashi, Poster 6th 18:00 electron (7GeV)

FM Calorimeter:

CsI(TI), waveform sampling (barrel)

Pure Csl + waveform sampling (end-caps)

Beryllium beam pipe 2cm diameter

Vertex Detector 2 layers DEPFET + 4 layers DSSD

> Central Drift Chamber He(50%):C₂H₆(50%), Small cells, long lever arm, fast electronics

Particle Identification Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (fwd)

positron (4GeV)

Commissioning of SuperKEKB

Schedule: beam commissioning phases

Phase I (completed)

- Circulate both beams; no collisions
- Tune accelerator optics, etc.
- Vacuum scrub
- Beam studies

Phase II (2017-18)

- First collisions
- Develop beam abort
- Tune accelerator optics, etc. (nano-beam)
- Detailed beam studies

Commissioning requirements

SuperKEKB

- Real-time **monitoring** of beam conditions
- **Quantify** effects of tuning (for example, collimator adjustments) on beam loss
- Isolate the **type and source** of beam loss
- Inform beam loss **simulations** to optimize performance

Belle II

- Guarantee a **safe**-enough radiation environment for Belle II
- **Mitigate** beam backgrounds (with physical shielding, electronic gating, magnet tuning, etc.) around interaction point
- Inform beam background **simulations** so they are properly accounted for in physics analysis

We need a "commissioning detector": a stand-in for Belle II to provide diverse real-time measurements of beam conditions...

Enter the BEAST

Primary detectors in BEAST II* for phase I:

System	Institution	#	Unique measurement	
PIN diodes	Wayne St.	64	Neutral vs. charged dose rate	
Time Projection Chambers	U. Hawaii	4	Fast neutron flux and tracking	
Diamonds	INFN Trieste	4	Beam abort	
He3 tubes	U. Victoria	4	Thermal neutron rate	
CsI(Tl) crystals	U. Victoria	6	EM energy spectrum, injection	
CsI+LYSO crystals	INFN Frascati	6+6	backgrounds	
BGO crystals	National Taiwan U.	8	Luminosity and EM rate	
CLAWS plastic scintillators	MPI Munich	8	Fast injection backgrounds	

Belle and the BEAST

Belle II will eventually roll in on a pair of railroad tracks

BEAST operation: phase I

Real-time monitoring (via EPICS)

- BEAST systems and SuperKEKB conditions monitored by shifters (**top**)
- BEAST live monitors shared with SuperKEKB control room (**bottom**)
- BEAST liaison in SuperKEKB control room during key beam study days

Offline

- Collected ~20 TB of data throughout phase I
- Simulation of loss distribution and detectors ongoing
- Analysis ongoing; main goal is to **inform simulations** with data

Beam backgrounds and preliminary results from BEAST

Touschek scattering

- Coulomb scattering between two particles in the same bunch
- Inverse lifetime is inversely proportional to the bunch size:

$$\frac{1}{\tau_T} \propto \frac{1}{\sigma_x \sigma_y \sigma_z}$$

• To measure, hold beam currents constant and vary beam size [right]

He3 tube thermal neutron rate vs. inverse beam size (Touschek is linear component)

Beam-gas

- Coulomb scattering off residual gas in beam pipe
- Phase I consisted of mostly **beam scrubbing**
- Scattering rate is proportional to current times pressure:

 $R_{BG} \propto I \cdot P$

• To measure, heat vacuum pump to inject gas [right]

BGO deposited energy vs. current*pressure (beam-gas is linear component)

Injection

- Charge is regularly injected into stored beam to counteract beam loss
- For <1ms after injection, topped-off
 bunches are messy; off-orbit particles can
 slam into pipe walls and spawn EM showers
- CLAWS (plastic scintillators) and CsI/LYSO crystals have time resolution to see
 bunch-by-bunch structure
- To measure, trigger on injection timing signal [right]

(arbitrary units) $10 \mu s = one turn$ rate Ξ Time First and subsequent orbits $(10\mu s)$ of newly injected bunch

Csl crystal hit time distribution after injection

Other

- Detailed spatial distribution from PIN diodes
- Directional fast neutrons from TPCs pointing to loss positions (**right**)
- Beam abort tuning for inner detectors in later phases using the diamond sensors
- Confirmation of integrated doses using dosimeters
- Effects of collimator positions

Fast neutron spatial distribution

Status and milestones

SuperKEKB status and milestones

Phase I success

- Smooth startup. Compared to KEKB:
 - 2-3 times the currents after 3 months
 - Fewer machine troubles/downtime
- New hardware (RF, magnet and vacuum) systems are all working successfully
- Target 360-720mA*hours beam scrubbing **met**

Phase II

- Prepare for nano-beam: install focusing magnets, tuning and feedback systems, new damping ring
- Low beta tuning with upgraded BEAST

See Y. Onishi, ICHEP highlights, 8/08 12:10

SuperKEKB integrated and instantaneous currents in Phase I, with target

Belle II status and milestones

Detector upgrades, very briefly:

- Time of propagation (TOP) Cherenkov detector modules all **installed, testing** ongoing (top)
- Drift chamber (CDC) strung and **observing cosmics** (bottom)
- VXD (inner pixel/strip silicon vertexing) completed **successful beam test** at DESY with full Belle II DAQ chain
- ECL (crystal EM calorimeter) electronics **installed in summer**, test with new firmware and software ongoing
- Aerogel Ring-Imaging Cherenkov (ARICH) endplate detector tiles cut, **installation almost complete**
- *K_L* and muon system (KLM): installation of DAQ infrastructure in progress, **first cosmics seen** June 2016

TOP modules installed in Belle barrel (top) CDC cosmic data visualized (bottom)

BEAST II status and milestones

Phase I success

- **Measurements** of all primary beam backgrounds
- **Live feedback** to SuperKEKB informed injector tuning, verification of vacuum scrubbing progress, etc.
- Detailed **tuning and verification of simulation** essential for Belle II operation; ongoing
- Analysis ongoing; look for a **paper in late 2016**

Phase II

- **4 new detector systems** to be embedded in inner region of Belle (see additional slides)
- Physical integration with Belle begins **October 2016**

The BEAST cave with BEAST, Feb. 2016

BEAST II status and milestones

Phase I success

- **Measurements** of all primary beam backgrounds
- **Live feedback** to SuperKEKB informed injector tuning, verification of vacuum scrubbing progress, etc.
- Detailed **tuning and verification of simulation** essential for Belle II operation; ongoing
- Analysis ongoing; look for a **paper in late 2016**

Phase II

- **4 new detector systems** to be embedded in inner region of Belle (see additional slides)
- Physical integration with Belle begins **October 2016**

The BEAST cave without BEAST, July 2016

Breaking news: QCS-L (one of two final focusing magnets) installed this week!

Thank you!

Additional slides

BEAST II: from the top

Location

- Crossing point of **electron beam** and **positron beam** (**interaction point, or "IP**")
- Belle II will roll into the same location in phases II+III

Structure

- Detectors mounted on non-magnetic fiberglass structure
- Aluminum central beam pipe

BEAST II: from the top

Location

- Crossing point of **electron beam** and **positron beam** (**interaction point, or "IP**")
- Belle II will roll into the same location in phases II+III

Structure

- Detectors mounted on non-magnetic fiberglass structure
- Aluminum central beam pipe

BEAST II: the commissioning detector

Primary detectors in BEAST II for phase **II**:

System	Institution	#	Unique measurement
PIN diodes	КЕК	<u>6480</u>	Neutral vs. charged dose rate
"Micro" Time Projection Chambers	U. Hawaii	48	Fast neutron flux and tracking
Diamonds	INFN Trieste	48	Ionizing radiation rate
He3 tubes	U. Victoria	4	Thermal neutron rate
CLAWS plastic scintillators	MPI Munich	82 ladders	Fast injection backgrounds

...continued

BEAST II: the commissioning detector

Primary detectors in BEAST II for phase **II**:

System	Institution	#	Unique measurement
Belle II PXD	U. Bonn	2 ladders	Radiation tolerance for phase III
Belle II SVD	KEK	4 ladders	Radiation tolerance for phase III
FANGS	U. Bonn	15	Silicon pixel sensors (synchrotron x-ray spectrum)
PLUME	Strasbourg	2 ladders	Silicon pixel sensors (collimator adjustment)

TPCs

Data

- Pixel chip data is like taking multiple pictures of charge cloud as it drifts, with each "exposure" corresponding to a new slice of the cloud
- 3D reconstruction of ionization cloud from an alpha particle (color encodes total ionization collected per pixel)
- Right: 3D plot of three different characteristic event types in TPC
 - o Alpha
 - o x-ray
 - Neutron recoil

BEAST shifting room

