Physics Prospects at Belle II

Jake Bennett, Carnegie Mellon University June 18, 2016 BEACH 2016 - Fairfax, VA

B factories

Very successful physics programs with a total recorded sample over 1.5 ab^{-1} (1.25 x 10⁹ BB)

Experimental confirmation of CKM mechanism as CPV source in the SM

State of the art:

EPS-HEP 2015 conference

Results from global fits to data

2001: CP violation in the B system is established following the first measurements of the CKM parameter sin2β by BABAR and Belle

Excellent agreement between SM and results from B-factories and LHCb

Results from global fits to data

Parameterize NP contributions to the $B_{d,s}$ mixing amplitudes as $M^{d,s}_{12} = (M^{d,s}_{12})_{CM} \times (1 + h_{d,s} e^{2i\sigma_{d,s}})$

- There is still room for new physics contributions (FCNC, LFV, B → τ tree-level NP, new sources of CPV)
- A 10-20% NP amplitude in B_d mixing is perfectly compatible with all current data
 - Scale ~20 TeV for tree-level, ~2 TeV at one loop

Prospects for New Physics (NP) at Belle II

- Search for NP in the flavor sector at the intensity frontier
 - Flavor physics provides a probe for beyond the TeV scale
- Signatures of new particles or processes observed through measurements of suppressed flavor physics reactions or from deviations from SM predictions
 - An observed discrepancy can be interpreted in terms of NP models
 - Need significantly more data to make this possible

- Belle II physics program much more than just CKM
 - Dark sector searches, Lepton Flavor Violation (LFV), QCD exotics, etc.

SuperKEKB nanobeams

Beam aspect ratio at IP

Vertical beta function at IP

Parameter		KE	KB	Super	unito	
		LER	HER	LER	HER	units
beam energy	Eb	3.5 8		4	7	GeV
CM boost	βγ	0.4	25	0.		
half crossing angle	φ	1	1	41	mrad	
horizontal emittance	εx	18 24		3.2	4.6	nm
emittance ratio	к	0.88	0.66	0.37	0.40	%
beta-function at IP	$\beta_x * / \beta_y *$	1200/5.9		32/0.27	25/0.30	mm
beam currents	l _b	1.64	1.19	3.6	2.6	А
beam-beam parameter	ξγ	129	90	0.881	0.0807	
beam size at IP	$\sigma_x * / \sigma_y *$	10	0/2	10/0	μm	
Luminosity	R	2.1 x	10 ³⁴	8 x	10 ³⁵	cm ⁻² s ⁻¹

Belle II detector KL and muon detector: **Resistive Plate Counter (barrel)** Scintillator + WLSF + MPPC (end-caps) **EM Calorimeter:** CsI(TI), waveform sampling (barrel) *See the talk by Pure Csl + waveform sampling (end-caps) Saurabh Sandilya **Particle Identification Time-of-Propagation counter (barrel)** electron (7GeV) Prox. focusing Aerogel RICH (fwd) Beryllium beam pipe 2cm diameter **Vertex Detector** 2 layers DEPFET + 4 layers DSSD positron (4GeV) **Central Drift Chamber** He(50%):C₂H₆(50%), Small cells, long lever arm, fast electronics First new particle collider since the LHC

(intensity frontier rather than energy frontier; e⁺ e⁻ rather than p p)

J. Bennett

Advantages of SuperKEKB and Belle II

- Very clean sample of quantum correlated $B^0\overline{B}^0$ pairs
- Low background environment \rightarrow efficient reconstruction of neutrals (π^0 , η , ...)
- High flavor-tagging efficiency
 - Belle II ~34% efficient vs. LHCb ~3%
 - Belle II can also measure K_S and K_L (impacts most time dependent CPV measurements)
- Dalitz plot analyses, missing mass analyses straightforward
- Large sample of τ leptons for measurements of rare decays and searches for LFV
- Systematics quite different than those of LHCb
 → NP seen by one experiment should be
 confirmed by the other
- Ultimate goal: 50 ab⁻¹ data sample

Full reconstruction tagging

• A powerful benefit of physics at B factories: fully reconstruct one B to tag the flavor of the other B, determine its momentum, isolate tracks of signal side

- Excellent tool for missing energy, missing mass analyses!
 - e.g. provide important high-mass sensitivity to the charged Higgs in the multi-TeV range

Belle II physics goals

- Rich physics program
 - Precision CKM, new sources of CPV, Lepton Flavor Violation, Dark Sectors, QCD exotics
- Competitive and complementary to LHCb physics program
 - Belle II strong in missing energy modes, time dependent CPV, very strong in CKM metrology

Expected uncertainties on several selected flavor observables with an integrated luminosity of 5 ab⁻¹ and 50 ab⁻¹ of Belle II data

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Observables	Belle	Belle	e II
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			(2014)	5 ab-1	50 ab-1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	UT angles	sin 2β	0.667 ± 0.023 ± 0.012 [56]	0.012	0.008
$ \begin{array}{cccc} & \gamma \left[{}^{\circ} \right] & 68 \pm 14 \ [13] & 6 & 1.5 \\ \mbox{Gluonic penguins} & S(B \to \phi K^0) & 0.00^{-0.19}_{-0.19} \ [19] & 0.053 & 0.018 \\ & S(B \to K^0_2 K^0_3 K^0_3) & 0.068 \pm 0.07 \pm 0.03 \ [57] & 0.028 & 0.011 \\ & S(B \to K^0_2 K^0_3 K^0_3) & 0.30 \pm 0.32 \pm 0.08 \ [17] & 0.100 & 0.033 \\ & \mathcal{P}(B \to K^0_2 \pi^0) & -0.05 \pm 0.14 \pm 0.05 \ [58] & 0.07 & 0.04 \\ \mbox{UT sides} & V_{cb} \mbox{inc.} & 41.6 \cdot 10^{-3} (1 \pm 1.8\%) \ [8] & 1.2\% \\ & V_{cb} \mbox{exc.} & 1.27\% \ [mbox{mass}, 12.7\% \ [mbox{mass}, 12.7\% \ [mbox{mass}, 11.6\%) \ [51] & 3.4\% & 3.0\% \\ & V_{cb} \mbox{exc.} & 4.77 \cdot 10^{-3} (1 \pm 6.0\% \ [s.x \pm 2.7\% \ [mbox{mass}, 11.6\%) \ [51] & 3.4\% & 3.0\% \\ & V_{cb} \mbox{exc.} & 4.47 \cdot 10^{-3} (1 \pm 6.0\% \ [s.x \pm 2.7\% \ [mbox{mass}, 12.5\% \ [51] \ [51] & 3.4\% & 3.0\% \\ & V_{ab} \mbox{exc.} & 4.77 \cdot 10^{-6} \ [10^{-6}] & 96(1 \pm 27\%) \ [26] \ [0\% & 5\% \ [8B \to \mu \nu \nu) \ [10^{-6}] & 96(1 \pm 27\%) \ [29]^{\dagger} & 5.2\% & 3.4\% \\ & R(B \to D \tau \nu) & 0.440(1 \pm 16.5\%) \ [29]^{\dagger} & 5.2\% & 3.4\% \\ & R(B \to D \tau \nu) & 0.440(1 \pm 16.5\%) \ [29]^{\dagger} & 5.2\% & 3.4\% \\ & R(B \to D \tau \nu)^{\dagger} & 0.332(1 \pm 9.0\%) \ [29]^{\dagger} & 2.9\% & 2.1\% \\ & \mathcal{B}(B \to K^* \nu \overline{\nu}) \ [10^{-6}] & <55 \ [31] & <21 \ 30\% \\ & \mathcal{B}(B \to K^* \nu \overline{\nu}) \ [10^{-6}] & <55 \ [31] & <21 \ 30\% \\ & \mathcal{B}(B \to K^* \nu \overline{\nu}) \ [10^{-6}] & <255 \ [31] & <21 \ 30\% \\ & \mathcal{B}(B \to K^* \nu \overline{\nu}) \ [10^{-6}] & <28.7 \ [40] \ 0.3 \ - \\ & \mathcal{B}(B \to T^* \nu) \ [10^{-6}] & <28.7 \ [40] \ 0.3 \ - \\ & \mathcal{B}(B \to \Lambda^* \nu \overline{\nu}) \ [10^{-6}] & <28.7 \ [40] \ 0.3 \ - \\ & \mathcal{B}(B \to \Lambda^* \nu \overline{\nu}) \ [10^{-6}] & <28.7 \ [40] \ 0.3 \ - \\ & \mathcal{B}(B \to \Lambda^* \nu \overline{\nu}) \ [10^{-6}] & <28.7 \ [40] \ 0.3 \ - \\ & \mathcal{B}(B \to \Lambda^* \nu \overline{\nu}) \ [10^{-6}] & <28.7 \ [40] \ 0.3 \ - \\ & \mathcal{B}(B \to \nabla^* \nu \overline{\nu}) \ [10^{-6}] \ - \ (21421) \ - \\ & \mathcal{B}(B \to \Lambda^* \nu \overline{\nu}) \ [10^{-6}] \ - \ (21421) \ - \\ & \mathcal{B}(B \to \Lambda^* \nu \overline{\nu}) \ [10^{-6}] \ - \ (21421) \ - \\ & \mathcal{B}(B \to \Lambda^* \nu \overline{\nu}) \ [10^{-6}] \ - \ (21421) \ - \\ & \mathcal{B}(B \to \Lambda^* \nu \overline{\nu}) \ [10^{-6}] \ - \ (21421) \ - \\ & \mathcal{B}(B \to \Lambda^* \nu \overline{\nu}) \ [10^{-6}] \ - \ (21421) \ - \\ & \mathcal{B}(B \to \Lambda^* \nu \overline{\nu}) \ [10^{-6}] \ - \ ($		α [°]	85 ± 4 (Belle+BaBar) [24]	2	1
		γ [°]	68 ± 14 [13]	6	1.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Gluonic penguins	$S(B \rightarrow \phi K^0)$	0.90+0.09 [19]	0.053	0.018
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$S(B \rightarrow \eta' K^0)$	$0.68 \pm 0.07 \pm 0.03$ [57]	0.028	0.011
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$S(B \rightarrow K_S^0 K_S^0 K_S^0)$	$0.30 \pm 0.32 \pm 0.08$ [17]	0.100	0.033
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$\mathcal{A}(B \to K^0 \pi^0)$	$-0.05 \pm 0.14 \pm 0.05$ [58]	0.07	0.04
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	UT sides	V _{cb} incl.	$41.6 \cdot 10^{-3}(1 \pm 1.8\%)$ [8]	1.2%	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		V _{cb} excl.	$37.5 \cdot 10^{-3}(1 \pm 3.0\%_{ex} \pm 2.7\%_{th})$ [10]	1.8%	1.4%
$ \begin{array}{c cccc} V_{ub} \mbox{ excl. (had. tag.)} & 3.52 \cdot 10^{-3}(1 \pm 9.5\%)[7] & 4.4\% & 2.3\% \\ \hline Missing E decays & \mathcal{B}(B \to \tau \nu) [10^{-6}] & 96(1 \pm 27\%) [26] & 10\% & 5\% \\ \mathcal{B}(B \to \mu \nu) [10^{-6}] & <1.7 [59] & 20\% & 7\% \\ \mathcal{R}(B \to D\tau \nu) & 0.440(1 \pm 16.5\%) [29]^{\dagger} & 5.2\% & 3.4\% \\ \mathcal{R}(B \to D^{\tau} \nu)^{\dagger} & 0.332(1 \pm 9.0\%) [29]^{\dagger} & 2.9\% & 2.1\% \\ \mathcal{B}(B \to K^{\ast} \nu \overline{\nu}) [10^{-6}] & <40 [31] & <15 & 20\% \\ \mathcal{B}(B \to K^{\ast} \nu \overline{\nu}) [10^{-6}] & <55 [31] & <21 & 30\% \\ \mathcal{B}(B \to K^{\ast} \nu \overline{\nu}) [10^{-6}] & 2.2 \pm 4.0 \pm 0.8 [60] & 1 & 0.5 \\ \mathcal{S}(B \to K_{3}^{\circ} \pi^{0} \gamma) & -0.33 \pm 0.65 \pm 0.18 [21] & 0.23 & 0.07 \\ \mathcal{C}_{7}/C_{9} \ (B \to X_{s}\ell) & -0.0 \pm 0.31 \pm 0.07 [20] & 0.11 & 0.035 \\ \mathcal{S}(B \to V_{3}^{\circ} \pi^{0} \gamma) & -0.33 \pm 0.65 \pm 0.18 [21] & 0.23 & 0.07 \\ \mathcal{C}_{7}/C_{9} \ (B \to X_{s}\ell) & -20\% [37] & 10\% & 5\% \\ \mathcal{B}(B_{s} \to \tau \gamma) [10^{-6}] & <8.7 [40] & 0.3 & - \\ \mathcal{B}(B_{s} \to \tau \gamma) [10^{-6}] & <1.5 [47] & 30\% & 25\% \\ Charm Rare & \mathcal{B}(D_{s} \to \pi \nu) & 5.31 \cdot 10^{-3}(1 \pm 5.3\% \pm 3.8\%) [44] & 2.9\% & 0.9\% \\ \mathcal{B}(D_{s} \to \tau \nu) & 5.70 \cdot 10^{-3}(1 \pm 5.3\% \pm 3.8\%) [44] & 3.5\% & 3.6\% \\ \mathcal{B}(D^{0} \to \chi_{3}^{0} \pi^{0}) [10^{-2}] & -0.32 \pm 0.21 \pm 0.09 [61] & 0.11 & 0.06 \\ A_{CP}(D^{0} \to K_{3}^{0} \pi^{+} \pi^{-}) [10^{-2}] & -0.21 \pm 0.16 \pm 0.09 [62] & 0.08 & 0.03 \\ Charm Mixing & x(D^{0} \to K_{3}^{0} \pi^{+} \pi^{-}) [10^{-2}] & 0.36 \pm 0.19 \pm 0.07 \\ \phi(D^{0} \to K_{3}^{0} \pi^{+} \pi^{-}) [0^{-1} = 4.11 \pm \frac{4}{3} [50] & 0.14 & 0.11 \\ y(D^{0} \to K_{3}^{0} \pi^{+} \pi^{-}) [0^{-1} = 4.511 \pm \frac{4}{3} [50] & 0.14 & 0.11 \\ y(D^{0} \to K_{3}^{0} \pi^{+} \pi^{-}) = 0.90 \pm 0.15 \pm 0.08 \\ [47] \ (D^{-1}) = 0.21 \pm 0.16 \pm 0.09 [62] & 0.08 & 0.03 \\ Charm Mixing & x(D^{0} \to K_{3}^{0} \pi^{+} \pi^{-}) = 0.90 \pm 0.15 \pm 0.08 \\ [47] \ (D^{-1}) = 0.21 \pm 0.16 \pm 0.09 [62] & 0.10 & 0.07 \\ \phi(D^{0} \to K_{3}^{0} \pi^{+} \pi^{-}) = 0.90 \pm 0.15 \pm 0.08 \\ [47] \ (D^{-1}) = 0.12 \pm 0.16 \pm 0.08 \\ [50] \ (D^{0} \to K_{3}^{0} \pi^{+} \pi^{-}) = 0.90 \pm 0.15 \pm 0.08 \\ [50] \ (D^{-1}) = 0.10 \pm 0.10^{-1} \\ (D^{-1}) = 0.10 \pm 0.10^{-1} \\ (D^{-1}) = 0.21 \pm 0.164 \\ (D^{-1}) = 0.21 \pm 0.164 \\ (D^{-1}) = 0.20 \\ (D^{-1}) = 0.21 \pm 0.164 \\ (D^{-1$		$ V_{\mu b} $ incl.	$4.47 \cdot 10^{-3}(1 \pm 6.0\%_{ex} \pm 2.5\%_{th})$ [5]	3.4%	3.0%
$\begin{array}{c cccc} \mbox{Missing E decays} & \ensuremath{\mathcal{B}}(B \to \tau \nu) [10^{-6}] & 96(1 \pm 27\%) [26] & 10\% & 5\% \\ & \ensuremath{\mathcal{B}}(B \to \mu \nu) [10^{-6}] & <1.7 [59] & 20\% & 7\% \\ & \ensuremath{\mathcal{R}}(B \to D \tau \nu) & 0.440(1 \pm 16.5\%) [29]^{\dagger} & 5.2\% & 3.4\% \\ & \ensuremath{\mathcal{R}}(B \to D^* \tau \nu)^{\dagger} & 0.332(1 \pm 9.0\%) [29]^{\dagger} & 2.9\% & 2.1\% \\ & \ensuremath{\mathcal{B}}(B \to K^{*+} \nu \overline{\nu}) [10^{-6}] & <40 [31] & <15 & 20\% \\ & \ensuremath{\mathcal{B}}(B \to K^{*+} \nu \overline{\nu}) [10^{-6}] & <55 [31] & <21 & 30\% \\ & \ensuremath{\mathcal{B}}(B \to X_{sd} \gamma) & 3.45 \cdot 10^{-4}(1 \pm 4.3\% \pm 11.6\%) & 7\% & 6\% \\ & \ensuremath{A_{CP}}(B \to X_{sd} \gamma) & -0.10 \pm 0.31 \pm 0.07 [20] & 0.11 & 0.035 \\ & \ensuremath{\mathcal{S}}(B \to \Phi_{sd}^{*} \rho \gamma) & -0.83 \pm 0.65 \pm 0.18 [21] & 0.23 & 0.07 \\ & \ensuremath{\mathcal{C}}(C_1(B \to X_{sd} \ell)) & -20\% [37] & 10\% & 5\% \\ & \ensuremath{\mathcal{B}}(B_s \to \tau \gamma) [10^{-6}] & <8.7 [40] & 0.3 & - \\ & \ensuremath{\mathcal{B}}(B_s \to \tau \gamma) [10^{-6}] & <8.7 [40] & 0.3 & - \\ & \ensuremath{\mathcal{B}}(B_s \to \tau \gamma) [10^{-6}] & <1.5 [47] & 30\% & 25\% \\ & \ensuremath{\mathcal{B}}(D_s \to \mu \nu) \\ & \ensuremath{\mathcal{B}}(D_s \to \mu \nu) \\ & \ensuremath{\mathcal{B}}(D_s \to \mu \nu) \\ & \ensuremath{\mathcal{B}}(D_s \to \tau \nu) & 5.70 \cdot 10^{-3}(1 \pm 5.3\% \pm 3.8\%) [44] & 2.9\% & 0.9\% \\ & \ensuremath{\mathcal{B}}(D_s \to \tau \nu) \\ & \ensuremath{\mathcal{B}}(D_s \to \tau \nu) \\ & \ensuremath{\mathcal{B}}(D_s \to \mu \nu) \\ & \ensuremath{\mathcal{B}}(D_s \to \pi \nu) \\ & \ensuremath{\mathcal{B}}(D_$		$ V_{ub} $ excl. (had. tag.)	$3.52 \cdot 10^{-3}(1 \pm 9.5\%)$ [7]	4.4%	2.3%
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Missing E decays	$\mathcal{B}(B \to \tau \nu)$ [10 ⁻⁶]	$96(1 \pm 27\%)$ [26]	10%	5%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\mathcal{B}(B \to \mu \nu)$ [10 ⁻⁶]	< 1.7 [59]	20%	7%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$R(B \rightarrow D\tau \nu)$	$0.440(1 \pm 16.5\%)$ [29] [†]	5.2%	3.4%
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$R(B \rightarrow D^* \tau \gamma)^{\dagger}$	$0.332(1 \pm 9.0\%)$ [29] [†]	2.9%	2.1%
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\mathcal{B}(B \to K^{*+} \nu \overline{\nu}) [10^{-6}]$	< 40 [31]	< 15	20%
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\mathcal{B}(B \rightarrow K^+ \nu \overline{\nu}) [10^{-6}]$	< 55 [31]	< 21	30%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Rad. & EW penguins	$\mathcal{B}(B \to X_s \gamma)$	$3.45 \cdot 10^{-4}(1 \pm 4.3\% \pm 11.6\%)$	7%	6%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$A_{CP}(B \rightarrow X_{s,d}\gamma) [10^{-2}]$	$2.2 \pm 4.0 \pm 0.8$ [60]	1	0.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$S(B \rightarrow K_S^0 \pi^0 \gamma)$	$-0.10 \pm 0.31 \pm 0.07[20]$	0.11	0.035
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$S(B \rightarrow \rho \gamma)$	$-0.83 \pm 0.65 \pm 0.18$ [21]	0.23	0.07
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$C_7/C_9 (B \rightarrow X_s \ell \ell)$	~20% [37]	10%	5%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$\mathcal{B}(B_s \to \gamma \gamma) [10^{-6}]$	< 8.7 [40]	0.3	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\mathcal{B}(B_s \rightarrow \tau \tau) [10^{-3}]$	-	< 2 [42]‡	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Charm Rare	$\mathcal{B}(D_s \rightarrow \mu \nu)$	$5.31 \cdot 10^{-3}(1 \pm 5.3\% \pm 3.8\%)$ [44]	2.9%	0.9%
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\mathcal{B}(D_s \to \tau \nu)$	$5.70 \cdot 10^{-3}(1 \pm 3.7\% \pm 5.4\%)$ [44]	3.5%	3.6%
$ \begin{array}{cccc} {\rm Charm} \ CP & A_{CP}(D^0 \to K^+K^-) \ [10^{-2}] & -0.32 \pm 0.21 \pm 0.09 \ [61] & 0.11 & 0.06 \\ & A_{CP}(D^0 \to \pi^0\pi^0) \ [10^{-2}] & -0.03 \pm 0.64 \pm 0.10 \ [62] & 0.29 & 0.09 \\ & A_{CP}(D^0 \to K_S^0\pi^0) \ [10^{-2}] & -0.21 \pm 0.16 \pm 0.09 \ [62] & 0.08 & 0.03 \\ \hline {\rm Charm\ Mixing} & x(D^0 \to K_S^0\pi^+\pi^-) \ [10^{-2}] & 0.56 \pm 0.19 \pm \frac{0.07}{0.13} \ [50] & 0.14 & 0.11 \\ & y(D^0 \to K_S^0\pi^+\pi^-) \ [10^{-2}] & 0.30 \pm 0.15 \pm \frac{0.08}{0.08} \ [50] & 0.08 & 0.05 \\ & q/p (D^0 \to K_S^0\pi^+\pi^-) & 0.90 \pm \frac{0.16}{0.15} \pm \frac{0.08}{0.06} \ [50] & 0.10 & 0.07 \\ & \phi(D^0 \to K_S^0\pi^+\pi^-) \ [^o] & -6 \pm 11 \pm \frac{4}{5} \ [50] & 6 & 4 \\ \hline {\rm Tau} & \tau \to \mu\gamma \ [10^{-9}] & < 45 \ [63] & < 14.7 & < 4.7 \\ & \tau \to e\gamma \ [10^{-9}] & < 120 \ [63] & < 39 & < 12 \\ & \tau \to \mu\mu\mu \ [10^{-9}] & < 21.0 \ [64] & < 3.0 & < 0.3 \\ \hline \end{array} $		$\mathcal{B}(D^0 \rightarrow \gamma \gamma) [10^{-6}]$	< 1.5 [47]	30%	25%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Charm CP	$A_{CP}(D^0 \to K^+K^-)$ [10 ⁻²]	$-0.32 \pm 0.21 \pm 0.09$ [61]	0.11	0.06
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$A_{CP}(D^0 \rightarrow \pi^0 \pi^0) [10^{-2}]$	$-0.03 \pm 0.64 \pm 0.10$ [62]	0.29	0.09
$\begin{array}{cccc} \text{Charm Mixing} & x(D^0 \to K_5^0 \pi^+ \pi^-) \left[10^{-2} \right] & 0.56 \pm 0.19 \pm \frac{0.07}{0.13} \left[50 \right] & 0.14 & 0.11 \\ & y(D^0 \to K_5^0 \pi^+ \pi^-) \left[10^{-2} \right] & 0.30 \pm 0.15 \pm \frac{0.08}{0.08} \left[50 \right] & 0.08 & 0.05 \\ & q/p (D^0 \to K_5^0 \pi^+ \pi^-) & 0.90 \pm \frac{0.16}{0.15} \pm \frac{0.08}{0.06} \left[50 \right] & 0.10 & 0.07 \\ & \phi(D^0 \to K_5^0 \pi^+ \pi^-) \left[\circ \right] & -6 \pm 11 \pm \frac{4}{5} \left[50 \right] & 6 & 4 \\ \hline \text{Tau} & \tau \to \mu \gamma \left[10^{-9} \right] & < 45 \left[63 \right] & < 14.7 & < 4.7 \\ & \tau \to e \gamma \left[10^{-9} \right] & < 120 \left[63 \right] & < 39 & < 12 \\ & \tau \to \mu \mu \mu \left[10^{-9} \right] & < 21.0 \left[64 \right] & < 3.0 & < 0.3 \\ \hline \end{array}$		$A_{CP}(D^0 \to K_S^0 \pi^0) [10^{-2}]$	$-0.21 \pm 0.16 \pm 0.09$ [62]	0.08	0.03
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Charm Mixing	$x(D^0 \to K_S^0 \pi^+ \pi^-)$ [10 ⁻²]	$0.56 \pm 0.19 \pm 0.07_{0.13}$ [50]	0.14	0.11
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$y(D^0 \to K_S^0 \pi^+ \pi^-) [10^{-2}]$	$0.30 \pm 0.15 \pm \frac{0.08}{0.08}$ [50]	0.08	0.05
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$ q/p (D^0 \rightarrow K_S^0 \pi^+ \pi^-)$	$0.90 \pm 0.16 \pm 0.08$ [50]	0.10	0.07
Tau $\tau \rightarrow \mu \gamma [10^{-9}]$ < 45 [63] < 14.7 < 4.7 $\tau \rightarrow e \gamma [10^{-9}]$ < 120 [63]		$\phi(D^0 \rightarrow K^0_S \pi^+ \pi^-)$ [°]	$-6 \pm 11 \pm \frac{4}{5}$ [50]	6	4
$\begin{array}{cccc} \tau \to e\gamma [10^{-9}] &< 120 [63] &< 39 &< 12 \\ \tau \to \mu\mu\mu [10^{-9}] &< 21.0 [64] &< 3.0 &< 0.3 \end{array}$	Tau	$\tau \rightarrow \mu \gamma [10^{-9}]$	< 45 [63]	< 14.7	< 4.7
$\tau \to \mu \mu \mu [10^{-9}]$ < 21.0 [64] < 3.0 < 0.3		$\tau \rightarrow e\gamma [10^{-9}]$	< 120 [63]	< 39	< 12
		$\tau \rightarrow \mu\mu\mu [10^{-9}]$	< 21.0 [64]	< 3.0	< 0.3

P. Urquijo / Nuclear and Particle Physics Proceedings 263–264 (2015) 15–23

Bottomonium spectroscopy

- Considerable progress recently in Lattice QCD
- Belle II has the opportunity to search for missing states
- Clean environment
 - Search for new states inclusively
 - Reconstruct a single resonance and search the recoiling system

13

2015	X(5568) XYZ Spectroscopy (a subset) P _c (4380) P _c (4450))))
2013	Z _b (10610) Z _b (10650)	
2011	Y(4140) Y(4274)	
2009	X(4350) X(4630) • Many interesting states (recently) discovered	
2007	$G(3900) \underbrace{\bigcirc 0}_{0} \underbrace{\odot 0}_{0} \underbrace$	
2005	Y(4260) Y(3940) X(3915) · Kinematical effects? Much to be done to quantify/confirm these stat	:es!
2003	X(3872)	
	KIE KEST WITH HERE	2

Are there new CP violating phases?

- Most theories involving NP include additional CP-violating phases
 - Some allow large deviations from SM predictions for B meson decays
- Search for new sources of CPV by comparing mixing-induced CP asymmetries in penguin transitions with tree-dominated modes
- Time-dependent CPV in b \rightarrow s decays such as B $\rightarrow \phi K^0$, $\eta' K^0$, $K^0 K^0 K^0$

$$\mathcal{P}(\Delta t) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \bigg\{ 1 + q \cdot \Big[\mathcal{S}\sin(\Delta m_d \Delta t) + \mathcal{A}\cos(\Delta m_d \Delta t) \Big] \bigg\}$$

• Discrepancies with respect to $J/\psi \ K^0$ could provide evidence for NP

14

Are there new CP violating phases?

- Most theories involving NP include additional CP-violating phases
 - Some allow large deviations from SM predictions for B meson decays
- Search for new sources of CPV by comparing mixing-induced CP asymmetries in penguin transitions with tree-dominated modes
- Time-dependent CPV in b \rightarrow s decays such as B $\rightarrow \phi K^0$, $\eta' K^0$, $K^0 K^0 K^0$

						ທີ 0.5 0.4		S(K ⁰ K ⁰ K ⁰ K ⁰)	
Observables	Belle	Belle II		LHCb		0.3 0.2		S(φ κ ⁰) — S(η κ ⁰ _s)		
	(2015)	50 ab 70%@ $\Upsilon(4S)$, improved K_S	$ab^{-1}@\Upsilon(4S)$	Kun-I	22 10-*	0.1		sin 2β		
	$(\sigma_{\rm stat}, \sigma_{\rm sys})$	$(\sigma_{\rm stat}, \sigma_{\rm sys})$	$(\sigma_{\rm stat},\sigma_{\rm sys})$	$(\sigma_{\rm stat}, \sigma_{\rm sys})$	$(\sigma_{\rm stat}, \sigma_{\rm sys})$					
$\sin(2\phi_1)$ in $B \rightarrow J/\psi K_S$	(0.023, 0.011)	(0.003, 0.007)	(0.007)	(0.035, 0.020)	(0.012, 0.007#)					
$sin(2\phi_1)$ in $B \rightarrow \phi K_S$	(0.14)	(0.018)	(0.015)	(0.30)#	(0.06)	1. A.				0.033
$sin(2\phi_1)$ in $B \rightarrow \eta' K_S$	(0.07, 0.03)	(0.008, 0.008)	(0.009)	-	-		14 A.			
$S_{CP}(B \rightarrow \pi^+\pi^-)$	(0.08, 0.03)	(0.013, 0.015)	(0.018)	(0.13, 0.02) 1 fb ⁻¹	‡ (0.018, 0.010)†	0.02	•			0.018
$C_{CP}(B \to \pi^+\pi^-)$	(0.06, 0.03)	(0.010, 0.015)	(0.016)	(0.15, 0.02) 1 fb ⁻¹	‡ (0.021, 0.010)†	0.01				0.011
								Belle II	Projection	0.008
						0.005	1		10	,

Integrated Luminosity [ab⁻¹]

Other probes for NP

- Radiative and electroweak processes
 - $b \rightarrow s\gamma (B \rightarrow K^*\gamma), b \rightarrow d\gamma (B \rightarrow \rho\gamma, \omega\gamma), b \rightarrow s\ell\ell (B \rightarrow K(^*)\ell\ell)$

Starts at one-loop order Suppressed by two orders of magnitude

- NP contribution could be different for each process
 - Always one-loop or higher in $b \rightarrow s(d)\gamma$, but may be tree level in $b \rightarrow s(d)\ell\ell$
- For example helicity-changing NP models and $B^0 \rightarrow K_S \pi^0 \gamma$

Standard Model $S_{K_S \pi^0 \gamma}^{SM} = -2 \frac{m_s}{m_b} \sin(2\beta) \sim -0.03$

b

Left-Right symmetric model $S_{K_S\pi^0\gamma}^{LR} = 0.67\cos(2\beta) \sim 0.5$

Leptonic B decays

- Experimentally challenging
 - >1 neutrino in the final state
 - Signal side only has 1 charged track (τ → μνν, evv, πν, ρν)
- Use fully reconstructed hadronic and semileptonic tags
- Useful for |V_{ub}| measurement (becomes competitive with semileptonic decays with 50 ab⁻¹)

Leptonic B decays

Constraints on tan β and m_H greatly improve with 50 ab⁻¹

Aim to measure $B(B \rightarrow \tau v)$ with precision of 3-5%

Semileptonic B decays

• Proceed via first-order electroweak interactions (mediated by W)

- Decays involving electrons and muons less sensitive to non-SM contributions
 - Measure CKM elements
 |V_{cb}| and |V_{ub}|
- Decays involving τ also sensitive to additional amplitudes
 - Search for NP
 - Experimentally challenging

2HDM:
$$B = B_{SM} \times m_{W^{\pm}} \left(\frac{\tan\beta}{m_{H^{\pm}}}\right)$$

J. Bennett

19

Flavor anomaly in R(D) and R(D*)

Belle II should be able to confirm the excess with ~5 ab⁻¹

- Combined significance of
 4.0σ disagreement with SM
- Not compatible with type II 2HDM, could be accommodated by more general charged Higgs of NP

CPV in $D^0-\overline{D}^0$ mixing

- SM mixing rate is sufficiently small that NP contributions may be detectable
- Mass eigenstates are superpositions of flavor eigenstates

$$D_{\frac{1}{2}} = pD^0 \pm q\bar{D}^0$$

In the absence of CPV, D₁ is CP-even, D₂ is CP-odd

 $x\equiv (m_1-m_2)/\Gamma ~~y\equiv (\Gamma_1-\Gamma_2)/(2\Gamma) ~~\Gamma\equiv (\Gamma_1+\Gamma_2)/2 ~~\phi=\mathrm{Arg}(q/p)$

CPV in $D^0-\overline{D}^0$ mixing

- Current measurements of x,y give many constraints on NP models
- LHCb will dominate most of these measurements, but Belle II should be competitive in a few
 - If LHCb sees NP, important for Belle II to independently confirm!

Analysis	Observable	Uncertainty (%)				
		Now $(\sim 1 \text{ ab}^{-1})$	$\mathcal{L} = 50 ~ \mathrm{ab^{-1}}$			
$K^0_S \pi^+\pi^-$	\boldsymbol{x}	0.21	0.08			
	y	0.17	0.05			
	q/p	18	6			
	ϕ	0.21 rad	0.07 rad			
$\pi^+\pi^-, K^+K^-$	y_{CP}	0.25	0.04			
	A_{Γ}	0.22	0.03			
$K^+\pi^-$	$x^{\prime 2}$	0.025	0.003			
	y'	0.45	0.04			
	q/p	0.6	0.06			
	ϕ	0.44	0.04 rad			

Expected uncertainties (M. Staric, KEK FFW14)

Direct CPV in Charm

$$A^f_{CP} = \frac{\Gamma(D^0 \to f) - \Gamma(\overline{D}^0 \to \overline{f})}{\Gamma(D^0 \to f) + \Gamma(\overline{D}^0 \to \overline{f})}$$

- Major Belle II contribution will be in channels with neutrals in the final state
- Most measurements will be systematics limited

mode	\mathcal{L} (fb ⁻¹)	A _{CP} (%)	Belle II at 50 ab ⁻¹
$D^0 \rightarrow K^+ K^-$	976	$-0.32\pm 0.21\pm 0.09$	± 0.03
$D^0 \rightarrow \pi^+\pi^-$	976	$+0.55 \pm 0.36 \pm 0.09$	± 0.05
$D^0 \rightarrow \pi^0 \pi^0$	976	$\sim\pm0.60$	± 0.08
$D^0 \rightarrow K_s^0 \pi^0$	791	$-0.28 \pm 0.19 \pm 0.10$	± 0.03
$D^0 \rightarrow K_s^0 \eta$	791	$+0.54 \pm 0.51 \pm 0.16$	± 0.07
$D^0 \rightarrow K^0_s \eta'$	791	$+0.98 \pm 0.67 \pm 0.14$	± 0.09
$D^0 \rightarrow \pi^+ \pi^- \pi^0$	532	$+0.43\pm1.30$	± 0.13
$D^0 ightarrow K^+ \pi^- \pi^0$	281	-0.60 ± 5.30	±0.40
$D^0 \rightarrow K^+ \pi^- \pi^+ \pi^-$	281	-1.80 ± 4.40	±0.33
$D^+ \rightarrow \phi \pi^+$	955	$+0.51 \pm 0.28 \pm 0.05$	±0.04
$D^+ \rightarrow \eta \pi^+$	791	$+1.74 \pm 1.13 \pm 0.19$	± 0.14
$D^+ ightarrow \eta' \pi^+$	791	$-0.12\pm 1.12\pm 0.17$	± 0.14
$D^+ \rightarrow K_s^0 \pi^+$	977	$-0.36 \pm 0.09 \pm 0.07$	± 0.03
$D^+ \rightarrow K_s^0 K^+$	977	$-0.25 \pm 0.28 \pm 0.14$	± 0.05
$D_s^+ \rightarrow K_s^0 \pi^+$	673	$+5.45 \pm 2.50 \pm 0.33$	±0.29
$D_s^+ \rightarrow K_s^0 K^+$	673	$+0.12\pm 0.36\pm 0.22$	± 0.05

(table by Marko Staric)

Lepton Flavor Violation

- Highly suppressed in the SM
 - BF on the order of 10^{-40} ($\tau \rightarrow \ell \gamma$) to 10^{-54} ($\tau \rightarrow \ell \ell \ell$)
- Clean probes for NP effects
 - May induce LFV at one-loop
- τ decays uniquely studied at B-factories
 - Hadron machines not competitive trigger and track p_T limiting

	reference	τ→μγ	τ→μμμ
SM + heavy Maj v_R	PRD 66(2002)034008	10 ⁻⁹	10 ⁻¹⁰
Non-universal Z'	PLB 547(2002)252	10 ⁻⁹	10 ⁻⁸
SUSY SO(10)	PRD 68(2003)033012	10 ⁻⁸	10 ⁻¹⁰
mSUGRA+seesaw	PRD 66(2002)115013	10-7	10 ⁻⁹
SUSY Higgs	PLB 566(2003)217	10 ⁻¹⁰	10 ⁻⁷

Lepton Flavor Violation

 Belle II can access LFV decay rates over 100 times smaller than Belle for the cleanest channels!

Tentative Schedule

- Construction/Installation ongoing
- "BEAST" Phase 1: Started in Feb 2016 (Belle II roll-in at the end of the year)
 - Simple background commissioning detector (diodes, TPCs, crystals).
 No final focus. Only single beam background studies possible
- "BEAST" Phase 2: Starts in Nov 2017
 - More elaborate inner background commissioning detector. Full Belle II outer detector. Full superconducting final focus. No vertex detectors.
 - Commissioning/physics(?)
- Phase 3 / Run 1: Fall 2018
 - Full detector, ~300 fb⁻¹

BEAST and partial Belle II commissioning

• Construction/Installation ongoing

Tentative Schedule

- "BEAST" Phase 1: Started in Feb 2016 (Belle II roll-in at the end of the year)
 - Simple background commissioning

TOP detector installed in Belle II structure (May 2016)!

Magnetic field mapping then CDC installation in the summer

Full detector, ~300 fb⁻

Tentative Schedule

- Construction/Installation ongoing
- "BEAST" Phase 1: Started in Feb 2016 (Belle II roll-in at the end of the year)
 - Simple background commissioning detector (diodes, TPCs, crystals).
 No final focus. Only single beam background studies possible

Accelerator commissioning

Tentative Schedule

- Construction/Installation ongoing
- "BEAST" Phase 1: Started in Feb 2016 (Belle II roll-in at the end of the year)
 - Simple background commissioning detector (diodes, TPCs, crystals). No final focus. Only single beam background studies possible
- "BEAST" Phase 2: Starts in Nov 2017
 - More elaborate inner background commissioning detector. Full Belle II outer detector. Full superconducting final focus. No vertex detectors.
 - Commissioning/physics(?) ullet
- Phase 3 / Run 1: Fall 2018
 - Full detector, ~300 fb⁻¹

2016

Accelerator commissioning

BEAST and partial Belle II commissioning

2018

2020

2022

2024

Tentative Schedule

- Construction/Installation ongoing
- "BEAST" Phase 1: Started in Feb 2016 (Belle II roll-in at the end of the year)
 - Simple background commissioning detector (diodes, TPCs, crystals).
 No final focus. Only single beam background studies possible
- "BEAST" Phase 2: Starts in Nov 2017
 - More elaborate inner background commissioning detector. Full Belle II outer detector. Full superconducting final focus. No vertex detectors.
 - Commissioning/physics(?)
- Phase 3 / Run 1: Fall 2018
 - Full detector, ~300 fb⁻¹

Summary

- Major upgrade at KEK represents an essentially new experiment
 - Many detector components and electronics replaced, software and analysis also improved
- Belle II has a rich physics program, complementary to existing experiments and energy frontier program
- SuperKEKB commissioning ongoing!
- First physics possible as early as 2017, full detector running in 2018

The Belle II Collaboration

615 colleagues, 98 institutions, 23 countries/regions

Super KEKB limitations

Y(6S) peak energy can be reached keeping the same beam asymmetry (i.e. the same boost) used for standard running at Y(4S)

The LER beam is limited by magnets in the beam transport line.

To reach Ecm=11.24 GeV (ΛΛ threshold) we can increase HER energy only, up to 7.55 GeV. (max Linac Energy)

B B threshold: 12.55 GeV

Energy	Outcome	Lumi (fb ⁻¹)	Comments
Υ(1S) On	N/A	60+	-No interest identified -Low energy
Υ(2S) On	New physics searches	20+	-Requires special trigger
Ύ(1D) Scan	Particle discovery	10-20	-Accessible in B Factories?
Υ(3S) On	Many -onia topics	200+	-Known resonance -Luminosity requirement: Phase 3
Υ(3S) Scan	Precision QED	~10	-Understanding of beam conditions needed
Ύ(2D) Scan	Particle discovery	10-20	-Unknown mass
>Ƴ(4S) On	Particle discovery?	10+?	-Energy to be determined
Ƴ(6S) On	Particle discovery?	30+?	-Upper limit of machine energy
Single y	New physics?	30+	-Special triggers required

Experiment	Scans/Off.	Res.	Υ($\Upsilon(5S)$ \checkmark		$\Upsilon(4S)$		$\Upsilon(3S)$		$\checkmark \Upsilon(2S)$		1S)
			10876	$6 { m MeV}$	10580	MeV	10353	5 MeV	10023	MeV	9460	MeV
	$\rm fb^{-1}$		$\rm fb^{-1}$	10^{6}	$\rm fb^{-1}$	10^{6}	fb=1	10^{6}	$\rm fb^{-1}$	10^{6}	$\rm fb^{-1}$	10^6
CLEO	17.1		0.4	0.1	16	17.1	1.2	5	1.2	10	1.2	21
BaBar	54		R_b	scan	433	471	30	122	14	99	-	_
Belle	100		121	36	711	772	3	12	25	158	6	102