(Heavy) Flavour Physics 2/2 CP Violation

Phillip Urquijo ARC Future Fellow The University of Melbourne

Pre-SUSY School Melbourne June/July 2016

ARC Centre of Excellence for Particle Physics at the Terascale

Belle II

Outline

Part 1: Flavour and Rare decays

- 1. What is flavour physics & why is it interesting?
- 2.Brief history of flavour
- 3.CKM mechanism
- 4.Experimental facilities
- 5.Tree level Decays
- 6.Flavour Changing Neutral Currents
- 7.Lepton decays

Part 2: CP violation

- 8.**The Unitarity triangle**
- 9. Meson-antimeson oscillations
- 10. Measurements of CP violation
- 11.Global analyses of flavour data & future facilities

1. CP Violation & the Baryon Asymmetry of the Universe

AMS ca. 2000 & Planck 2015

Determined from power spectrum of the CMB & BBN. Planck/WMAP/COBE

$$\eta = \frac{n_B}{n_{\gamma}} = \frac{n_b - b_{\bar{b}}}{n_{\gamma}} = 6.05(7) \times 10^{-10}$$

Pre-SUSY School 2016, Flavour Physics

Phillip URQUIJO

4

Ingredients for Barry O'Genesis

- B violation (sphalerons)
- C & CP violation
- Out-of-equilibrium or CPT violation

Scenarios: leptogenesis, EW baryogenesis, Afflek-Dine, asymmetric DM, cold baryogenesis, postsphaleron baryogenesis...

Standard Model BSM

Hierarchy of the CKM Matrix

• Wolfenstein Parametrization: Expansion in $\lambda = \sin \theta_C \approx 0.22$

(4 parameters: $\lambda \approx 0.22$, $A \approx 1$, ρ , η)

CP Violation and the BAU

- We can estimate the magnitude of the baryon asymmetry of the Universe caused by KM CP violation
- Introduce parameterisation invariant measure of CP in quark sector, J.

Mass scale **M** can be taken to be EW scale O(100 GeV) This gives an asymmetry **O(10**⁻¹⁷) much below observed **O(10**⁻¹⁰)

Phillip URQUIJO

7

The Six Unitarity Triangles

$$V^{\dagger}V = \begin{pmatrix} V_{ud}^{*} & V_{cd}^{*} & V_{td}^{*} \\ V_{us}^{*} & V_{cs}^{*} & V_{ts}^{*} \\ V_{ub}^{*} & V_{cb}^{*} & V_{tb}^{*} \end{pmatrix} \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{array}{cccc} (d) V_{td} V_{cd}^{*} + V_{ts} V_{cs}^{*} + V_{tb} V_{cb}^{*} = 0 \\ \propto \lambda^{2} & \propto \lambda^{2} & \propto \lambda^{4} \end{array} \\ \hline (e) V_{ud} V_{ub}^{*} + V_{cd} V_{cb}^{*} + V_{td} V_{tb}^{*} = 0 \\ \hline (f) V_{td} V_{ud}^{*} + V_{ts} V_{us}^{*} + V_{tb} V_{ub}^{*} = 0 \\ \propto \lambda^{3} & \propto \lambda^{3} & \propto \lambda^{3} \end{array}$$

Pre-SUSY School 2016, Flavour Physics

Unitarity Triangles for B_d

The Unitarity Triangle ("B_d Triangle")

Consistency check for new CP violation sources

Pre-SUSY School 2016, Flavour Physics

Phillip URQUIJO

 $V_{td} = |V_{td}| e^{-i\beta}$

2. Meson Mixing

Neutral Meson Mixing

The eigenstates of flavour M⁰ anti-M⁰, degenerate in pure QCD, mix under weak interactions.

M⁰: K⁰ (anti-s d), D⁰(c anti-u), B⁰(anti-b d), B_s⁰(anti-b s)

Mixing can occur via short distance or long distance processes

Time dependent Schrödinger equation:

$$\frac{i}{2}\Gamma \left(\frac{M^{0}}{\overline{M}^{0}} \right) i \frac{\partial}{\partial t} \left(\frac{M^{0}}{\overline{M}^{0}} \right) = H \left(\frac{M^{0}}{\overline{M}^{0}} \right) = \left(M - \frac{i}{2}\Gamma \right) \left(\frac{M^{0}}{\overline{M}^{0}} \right)$$

H is Hamiltonian, **M** & **Γ** are 2x2 Hermitian matrices

Pre-SUSY School 2016, Flavour Physics

Hamiltonian

$$\mathcal{H} = M - \frac{i}{2}\Gamma = \begin{pmatrix} M & M_{12} \\ M_{12}^* & M \end{pmatrix} - \frac{i}{2}\begin{pmatrix} \Gamma & \Gamma_{12} \\ \Gamma_{12}^* & \Gamma \end{pmatrix}$$

Schrödinger equation

$$i\frac{d}{dt}\left(\begin{array}{c}|B^{0}(t)\rangle\\|\overline{B}^{0}(t)\rangle\end{array}\right) = \mathcal{H}\left(\begin{array}{c}|B^{0}(t)\rangle\\|\overline{B}^{0}(t)\rangle\end{array}\right)$$

Diagonalising

$$\Delta m = m_{B_H} - m_{B_L} = 2 |M_{12}| \qquad \phi = \arg\left(-M_{12}/\Gamma_{12}\right)$$
$$\Delta \Gamma = \Gamma_L - \Gamma_H = 2 |\Gamma_{12}| \cos \phi$$

Pre-SUSY School 2016, Flavour Physics

Neutral Meson Mixing: 2 Mechanisms

 Δm : value depends on rate of mixing diagram

$$x = \frac{\Delta m}{\Gamma} \sim \mathcal{O}(1)$$

short distance, virtual

$$\Delta \Gamma: \dot{value} \left(\stackrel{M^0}{\underline{D}}_{0}^{0} \right) \stackrel{I}{=} dr \left(\stackrel{M^0}{\underline{M}}_{0}^{0} \right) \stackrel{I}{=} \left(\stackrel{I}{\underline{D}}_{0}^{0} \stackrel{I}{\underline{D}}_{0}^{0} \right) \stackrel{I}{=} \left(\stackrel{I}{\underline{D}}_{0}^{0} \stackrel{I}{\underline{D}}_{0}^{0} \right) \stackrel{I}{\underline{D}}_{0}^{0} \stackrel{I}{\underline{D}}_{0}^{0}$$

Long distance, on shell states important for K, not B mesons

Phillip URQUIJO

d /

S

The Neutral Meson-Antimeson Systems

Pre-SUSY School 2016, Flavour Physics

Phillip URQUIJO

14

Mixing in the K, D, B, B_s Systems

CP Asymmetry at e+e- collider

BABAR @ SLAC LHCb @ CERN

$$A_{\min}(t) = \frac{N(B)_{\underline{u}n} | V_{\underline{mixed}}(t) - N(B)_{\min}(t)}{N(B)_{un} | V_{\underline{mixed}}(t)} (t) + N(B)_{\min}(t)} \sim \cos(\Delta mt)$$

3. CP Violation with B mesons

CP Violation

CP violation caused by different interference effects in particle and antiparticle decays

One of the two amplitudes could be from mixing Due to complex part of CKM matrix

$$\begin{split} |A|^2 &= & |A|^2 = \\ A_1^2 + A_2^2 + 2A_1A_2\cos(\Delta\phi + \Delta\delta) & A_1^2 + A_2^2 + 2A_1A_2\cos(-\Delta\phi + \Delta\delta) \\ \text{For CPV A1 and A2 need to have different weak phases } \Phi \text{ and different} \\ \text{CP invariant (e.g. strong) phases } \delta \end{split}$$

Pre-SUSY School 2016, Flavour Physics

Classification of CP-violating Effects

- 1. CP violation in the decay (direct CP violation)
- 2. CP violation in mixing (indirect CP violation)
- 3. CP violation in mixing/ decay interference

$$\Gamma(P \to f) \neq \Gamma(\bar{P} \to \bar{f}) \Leftrightarrow \left|\frac{\bar{A}_{\bar{f}}}{A_f}\right| \neq 1$$

$$\Gamma(P^0 \to \bar{P}^0) \neq \Gamma(\bar{P}^0 \to P^0) \Leftrightarrow \left|\frac{q}{p}\right| \neq 1$$

$$\Gamma(P^0(\rightsquigarrow \bar{P}^0) \to f)(t) \neq \Gamma(\bar{P}^0(\rightsquigarrow P^0) \to f)(t)$$

large strong phase effects in charm sector make it difficult to determine weak phases.

CPV in Interference

Measurement of β using CP eigenstates

CP violation in interference between decay w/ and w/o mixing

The "Golden Decay":

 $B^0 \rightarrow J/\Psi K^0$

 $arg(V_{cs}V_{cb}^{*}) - arg(V_{td}^{2}V_{tb}^{2}V_{cb}V_{cs}^{*}V_{cs}^{2}V_{cd}^{*2}) = -2\beta$

Time dependent asymmetry

Define the time-dependent CP asymmetry

• Define time-dependent *CP* asymmetry:

$$A_{CP}(t) = \frac{N(\overline{B}^{0}(t) \rightarrow J/\psi K_{S}^{0}) - N(B^{0}(t) \rightarrow J/\psi K_{S}^{0})}{N(\overline{B}^{0}(t) \rightarrow J/\psi K_{S}^{0}) + N(B^{0}(t) \rightarrow J/\psi K_{S}^{0})} = \sin(2\beta)\sin(\Delta mt)$$

We can measure the angle of the UT

What do we have to do to measure $A_{CP}(t)$?

- Step 1: Produce and detect $B^0 \rightarrow f_{CP}$ events
 - Step 2: Separate B^0 from \overline{B}^0
 - Step 3: Measure the decay time t

Discovery in Belle

Overpowering evidence for CP violation (matterantimatter asymmetries)

Pre-SUSY School 2016, Flavour Physics

Discovery in Belle

Overpowering evidence for CP violation (matterantimatter asymmetries)

sin2ß Measurement Principle

sinß Results

sin2ß and the Nobel Prize

"... As late as 2001, the two particle detectors BaBar at Stanford, USA and Belle at Tsukuba, Japan, both detected broken symmetries independently of each other. The results were exactly as Kobayashi and Maskawa had predicted almost three decades earlier."

Pre-SUSY School 2016, Flavour Physics

Looking for new physics in Time Dep. CPV

Increasing Tree diagram amplitude

Increasing NP sensitivity

Penguin sin $2\Phi_1$

Pre-SUSY School 2016, Flavour Physics

Penguin sin $2\Phi_1$

Φ_1 from Radiative Penguin Modes

• SM EW purely L-handed.

Right-handed current is a signature of NP

LHCb

 $\cos\theta_{u}$

 ϕ_h [rad]

3500 ates / 0.05 3000 2500

LHCb

LHCb, PRL 114 (2015) 041801

С

 B^0_{s}

 V_{cb}^*

W

b

 J/ψ

 B_s^0

 ϕ_l

100

K

$$\begin{split} \phi_s^{c\bar{c}s} &= -0.033 \pm 0.033 \text{ rad} \\ \Delta\Gamma_s &= 0.083 \pm 0.006 \text{ ps}^{-1} \\ \end{split}$$

Direct CPV

Direct CP Violation in charmless hadronic decays

First evidence 2008

Belle, PRD87, 031103(R)(2013) Belle, Nature 452, 332 (2008)

• Unexpected difference in Acp between B⁺ and B⁰ \rightarrow K π

$B \rightarrow K h h, B \rightarrow \pi h h @ LHCb$

- Puzzling patterns of CPV in $B^{\pm} \rightarrow K^{\pm}h^{+}h^{-}$ and $B^{\pm} \rightarrow \pi^{\pm}h^{+}h^{-}$
- Large local asymmetries in regions not associated to resonances
 - Possibly final state re-scattering generates strong phase difference

B.Bhattacharya, M. Gronau, J. Rosner Phys.Lett. B726 (2013) 337-343

We have examined the CP asymmetries in three-body decays of B^{\pm} mesons to charged pions and kaons. Predictions of ratios of asymmetries on the basis of U-spin are seen to be obeyed qualitatively, with violations ascribable to resonant substructure differing for $\pi^+\pi^-$ and K^+K^- substates. Larger CP asymmetries for regions of the Dalitz plot involving low effective mass of these substates can be undertood qualitatively in terms of large final-state strong phases; the weak phases are conducive to such large asymmetries, being nearly maximal. We conclude that further resolution of this problem must rely either on a deeper understanding of the resonant substructure in $B \to PPP$ decays, or further understanding of the hadronization process independently of resonances. We have argued that the approximately equal magnitudes and opposite signs measured for asymmetries in $B^+ \to \pi^+\pi^+\pi^-$ and $B^+ \to K^+\pi^+\pi^-$ may follow from the closure of low-mass $\pi^+\pi^-$ and K^+K^- channels involving only $\pi\pi \leftrightarrow K\bar{K}$ rescattering.

CPV in mixing

CP violation in mixing

as^{sl} and ad^{sl} with full Run1 dataset (3/fb)

CP violation in mixing

4. Global Fit & Future Facilities

Generic Analyses for New Physics

Consistency is only at the 5% level in global fit.

$$\lambda^2 \equiv \frac{|V_{us}|^2}{|V_{ud}|^2 + |V_{us}|^2} \qquad A^2 \lambda^4 \equiv \frac{|V_{cb}|^2}{|V_{ud}|^2 + |V_{us}|^2}$$

$$\bar{\rho} + i\bar{\eta} = -\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}$$

Generic Analyses for New Physics

Consistency is only at the 5% level in global fit.

$$\lambda^2 \equiv \frac{|V_{us}|^2}{|V_{ud}|^2 + |V_{us}|^2} \qquad A^2 \lambda^4 \equiv \frac{|V_{cb}|^2}{|V_{ud}|^2 + |V_{us}|^2} \qquad \bar{\rho} + i\bar{\eta} = -\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}$$

$$\eta \equiv \frac{n_b - n_{\overline{b}}}{n_{\gamma}} = (6.21 \pm 0.16) \times 10^{-10}$$

KM Theoretical prediction

WMAP data

$$\eta \equiv \frac{n_b - n_{\overline{b}}}{n_\gamma} = (6.21 \pm 0.16) \times 10^{-10}$$

KM Theoretical prediction

$$\left(\frac{n_b}{n_\gamma}\right)^{\rm SM} \propto \frac{J_{CP}}{T_c^{12}} \sim 10^{-20}$$

The CP Violation predicted by Kobayashi and Maskawa is too small by ~10 orders of magnitude in the Standard Model.

WMAP data

$$\eta \equiv \frac{n_b - n_{\overline{b}}}{n_\gamma} = (6.21 \pm 0.16) \times 10^{-10}$$

KM Theoretical prediction

$$\left(\frac{n_b}{n_\gamma}\right)^{\rm SM} \propto \frac{J_{CP}}{T_c^{12}} \sim 10^{-20}$$

The CP Violation predicted by Kobayashi and Maskawa is too small by ~*10 orders of magnitude* in the Standard Model.

WMAP data

$$\eta \equiv \frac{n_b - n_{\overline{b}}}{n_{\gamma}} = (6.21 \pm 0.16) \times 10^{-10}$$

KM Theoretical prediction

$$\left(\frac{n_b}{n_\gamma}\right)^{\rm SM} \propto \frac{J_{CP}}{T_c^{12}} \sim 10^{-20}$$

The CP Violation predicted by Kobayashi and Maskawa is too small by ~10 orders of magnitude in the Standard Model.

Pre-SUSY School 2016, Flavour Physics

WMAP data

$$\eta \equiv \frac{n_b - n_{\overline{b}}}{n_\gamma} = (6.21 \pm 0.16) \times 10^{-10}$$

KM Theoretical prediction

$$\left(\frac{n_b}{n_\gamma}\right)^{\rm SM} \propto \frac{J_{CP}}{T_c^{12}} \sim 10^{-20}$$

The CP Violation predicted by Kobayashi and Maskawa is too small by ~10 orders of magnitude in the Standard Model.

Pre-SUSY School 2016, Flavour Physics

- Unwise to assume ~10% (or even 0.1%) is 'good enough' with flavour
- 1962: "A special search at Dubna was carried out by E. Okonov and his group. They did not find a single
 K_L to π⁺ π⁻ event among 600 decays into charged particles (Anikira *et al*, JETP 1962). At that stage the search was terminated by the administration of the Lab. The group was unlucky."
 -Lev Okun, "The Vacuum as Seen from Moscow"

1964: BF= 2 x 10⁻³, Cronin, Fitch et al. 1964.

SuperKEKB now in operation!

 First new particle collider since the LHC (intensity frontier rather than energy frontier; e+ e- rather than p p)

1 Amp achieved in Low energy ring, 21 June 2016 - Milestone achieved.

Shutting down until 2017 to install superconducting final focusing magnets.

Pre-SUSY School 2016, Flavour Physics

Belle II Detector: Starting up in 2017

Belle II Detector: Starting up in 2017

Belle II Detector: Starting up in 2017

Phillip URQUIJO

46

Silicon Vertex Detector Construction

Melburnians @ DESY Test Beam

Pre-SUSY School 2016, Flavour Physics

New Physics in mixing: past & future data

• Meson mixing,

- What is the scale Λ ? How different is C_{NP} from C_{SM} ?
- If deviation from SM seen \rightarrow upper bound on Λ
- Assume NP from Trees in negligible, test for NP in loops only i.e. New Physics only enters M₁₂, the real part of the mixing Hamiltonian.
- 3 x 3 CKM matrix is unitary.

$$M_{12} = M_{12}^{SM} \times (1 + he^{2i\sigma})$$

Pre-SUSY School 2016, Flavour Physics

NP in B_{d,s} & K mixing: Input

- Observables not affected by NP first used to constrain CKM:
 - $|V_{ud}|, |V_{us}|, |V_{cb}|, |V_{ub}|, \Phi_3 \text{ and } \Phi_2 = \pi \Phi_3 \Phi_{1eff}((c \text{ anti-c})K))$
- NP impact estimated from
 - Meson mixing Δm_s , Δm_d , $|\epsilon_K|$,
 - Lifetime difference $\Delta\Gamma_s$, & semileptonic asymmetry A_{SL} ,
 - Time dep. CP asymmetries β_s , Φ_1 , and Φ_2 (decay-mixing interference)

• Qualitative change after 2003: first Φ_3 and Φ_2 constraints

Pre-SUSY School 2016, Flavour Physics

Phillip URQUIJO

51

NP in B_d mixing: Fit results

• at 95% NP \leq (many x SM) \implies NP \leq (0.3 x SM) \implies NP \leq (0.05 x SM)

	Couplings	NP loop	Scales (TeV) probed by	
$ C_{ii} ^2 (4\pi)^2 = C_{ii} ^2 (4.5 \text{ TeV})^2$	Couplings	order	B_d mixing	B_s mixing
$h \simeq 1.5 \frac{ \circ ij }{ \uparrow t ^2} \frac{(1n)}{G} \simeq \frac{ \circ ij }{ \uparrow t ^2} \left(\frac{100100}{\Lambda} \right)$	$ C_q = V_{tb}V_{tq}^* $	tree level	17	19
$ \lambda_{ij}^{\iota} ^2 \ G_{ m F}\Lambda^2 = \lambda_{ij}^{\iota} ^2 \ \setminus \Lambda$	(CKM-like)	one loop	1.4	$\bar{1.5}$
$- \alpha m m (O \rightarrow t*)$	$ C_q = 1$	tree level	2×10^3	5×10^2
$\sigma = \arg(C_{ij}\lambda_{ij})$	(no hierarchy)	one loop	2×10^{2}	40

Stage II: similar sensitivity to gluino masses explored at LHC 14TeV

Pre-SUSY School 2016, Flavour Physics

Phillip URQUIJO

Pre-SUSY School 2016, Flav

- Flavor physics is exciting and fundamental. Did we just find NP via new weak interaction couplings ?
- Flavor could be the path for the future of HEP but we need much more data.
- SuperKEKB commissioning started in February. Belle II rolls in at the end of the year. First collisions in late 2017. Belle II physics runs in 2018 and the LHCb upgrade in ~2021. These facilities will inaugurate a new era of flavor physics and the study of CP violation.
- Other new facilities in lepton sector not discussed here, e.g. COMET, MEG.

https://www.facebook.com/belle2collab https://twitter.com/belle2collab

Backup

Belle II Detector

Belle II TDR, arXiv:1011.0352

KL and muon detector

Resistive Plate Counter (barrel outer layers) Scintillator + WLSF + MPPC (end-caps , inner 2 barrel layers)

EM Calorimeter

CsI(Tl), waveform sampling electronics (barrel) Pure CsI + waveform sampling (end-caps) *later*

electrons (7GeV)

Vertex Detector

2 layers Si Pixels (DEPFET) + 4 layers Si double sided strip DSSD

Central Drift Chamber

Smaller cell size, long lever arm

Particle Identification

Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (forward) Fake rate >2 x lower than in Belle

positrons (4GeV)

Golden modes: B physics

	Observables	Belle	Bell	e II
		(2014)	5 ab^{-1}	50 ab^{-1}
UT angles	$\sin 2\beta$	$0.667 \pm 0.023 \pm 0.012$ [64]	0.012	0.008
	α [°]	85 ± 4 (Belle+BaBar) [24]	2	1
	γ [°]	68 ± 14 [13]	6	1.5
Gluonic penguins	$S(B \to \phi K^0)$	$0.90^{+0.09}_{-0.19}$ [19]	0.053	0.018
	$S(B\to\eta' K^0)$	$0.68 \pm 0.07 \pm 0.03$ [65]	0.028	0.011
	$S(B \to K^0_S K^0_S K^0_S)$	$0.30 \pm 0.32 \pm 0.08$ [17]	0.100	0.033
	$\mathcal{A}(B \to K^0 \pi^0)$	$-0.05 \pm 0.14 \pm 0.05$ [66]	0.07	0.04
UT sides	$ V_{cb} $ incl.	$41.6 \cdot 10^{-3} (1 \pm 1.8\%) [8]$	1.2%	
	$ V_{cb} $ excl.	$37.5 \cdot 10^{-3} (1 \pm 3.0\%_{\text{ex.}} \pm 2.7\%_{\text{th.}}) [10]$	1.8%	1.4%
	$ V_{ub} $ incl.	$4.47 \cdot 10^{-3} (1 \pm 6.0\%_{\text{ex.}} \pm 2.5\%_{\text{th.}}) [5]$	3.4%	3.0%
	$ V_{ub} $ excl. (had. tag.)	$3.52 \cdot 10^{-3} (1 \pm 8.2\%)$ [7]	4.7%	2.4%
Missing E decays	$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	$96(1 \pm 27\%)$ [26]	10%	5%
	$\mathcal{B}(B \to \mu \nu) \ [10^{-6}]$	< 1.7 [67]	20%	7%
	$R(B \to D \tau \nu)$	$0.440(1 \pm 16.5\%) \ [29]^{\dagger}$	5.6%	3.4%
	$R(B\to D^*\tau\nu)^\dagger$	$0.332(1 \pm 9.0\%) \ [29]^{\dagger}$	3.2%	2.1%
	$\mathcal{B}(B \to K^{*+} \nu \overline{\nu}) \ [10^{-6}]$	< 40 [30]	< 15	30%
	$\mathcal{B}(B \to K^+ \nu \overline{\nu}) \ [10^{-6}]$	< 55 [30]	< 21	30%
Rad. & EW penguins	$\mathcal{B}(B \to X_s \gamma)$	$3.45 \cdot 10^{-4} (1 \pm 4.3\% \pm 11.6\%)$	7%	6%
	$A_{CP}(B \to X_{s,d}\gamma) \ [10^{-2}]$	$2.2 \pm 4.0 \pm 0.8$ [68]	1	0.5
	$S(B \to K_S^0 \pi^0 \gamma)$	$-0.10 \pm 0.31 \pm 0.07$ [20]	0.11	0.035
	$S(B ightarrow ho \gamma)$	$-0.83 \pm 0.65 \pm 0.18$ [21]	0.23	0.07
	$C_7/C_9 \ (B \to X_s \ell \ell)$	${\sim}20\%$ [36]	10%	5%
	$\mathcal{B}(B_s \to \gamma \gamma) \ [10^{-6}]$	< 8.7 [42]	0.3	_
	$\mathcal{B}(B_s \to \tau \tau) \ [10^{-3}]$	_	< 2 [44]‡	_

Pre-SUSY School 2016, Flavour Physics

	Observables	Belle	Bel	lle II
		(2014)	5 ab^{-1}	$50 {\rm ~ab^{-1}}$
Charm Rare	$\mathcal{B}(D_s \to \mu \nu)$	$5.31 \cdot 10^{-3} (1 \pm 5.3\% \pm 3.8\%) [46]$	2.9%	0.9%
	$\mathcal{B}(D_s \to \tau \nu)$	$5.70 \cdot 10^{-3} (1 \pm 3.7\% \pm 5.4\%) [46]$	3.5%	2.3%
	$\mathcal{B}(D^0 \to \gamma \gamma) \ [10^{-6}]$	< 1.5 [49]	30%	25%
Charm CP	$A_{CP}(D^0 \to K^+ K^-) \ [10^{-2}]$	$-0.32 \pm 0.21 \pm 0.09$ [69]	0.11	0.06
	$A_{CP}(D^0 \to \pi^0 \pi^0) \ [10^{-2}]$	$-0.03 \pm 0.64 \pm 0.10$ [70]	0.29	0.09
	$A_{CP}(D^0 \to K_S^0 \pi^0) \ [10^{-2}]$	$-0.21 \pm 0.16 \pm 0.09$ [70]	0.08	0.03
Charm Mixing	$x(D^0 \to K_S^0 \pi^+ \pi^-) \ [10^{-2}]$	$0.56 \pm 0.19 \pm {0.07 \atop 0.13}$ [52]	0.14	0.11
	$y(D^0 \to K_S^0 \pi^+ \pi^-) \ [10^{-2}]$	$0.30 \pm 0.15 \pm \frac{0.05}{0.08}$ [52]	0.08	0.05
	$ q/p (D^0\to K^0_S\pi^+\pi^-)$	$0.90 \pm \frac{0.16}{0.15} \pm \frac{0.08}{0.06}$ [52]	0.10	0.07
	$\phi(D^0 \to K^0_S \pi^+ \pi^-) \ [^\circ]$	$-6 \pm 11 \pm \frac{4}{5}$ [52]	6	4
Tau	$\tau \to \mu \gamma \ [10^{-9}]$	$< 45 \ [71]$	< 14.7	< 4.7
	$\tau \to e \gamma \ [10^{-9}]$	< 120 [71]	< 39	< 12
	$\tau \to \mu \mu \mu \ [10^{-9}]$	< 21.0 [72]	< 3.0	< 0.3

Complementary to LHCb

Observable	Expected th.	Expected exp.	Facility
	accuracy	uncertainty	
CKM matrix			
$ V_{us} [K \rightarrow \pi \ell \nu]$	**	0.1%	K-factory
$ V_{ch} [B \to X_c \ell \nu]$	**	1%	Belle II
$ V_{vb} [B_d \rightarrow \pi \ell \nu]$	*	4%	Belle II
$\sin(2\phi_1) \left[c\bar{c}K_S^0\right]$	***	$8 \cdot 10^{-3}$	Belle II/LHCb
ϕ_2		1.5°	Belle II
ϕ_3	***	3°	LHCb
CPV			
$S(B_s \rightarrow \psi \phi)$	**	0.01	LHCb
$S(B_s \to \phi \phi)$	**	0.05	LHCb
$S(B_d \rightarrow \phi K)$	***	0.05	Belle II/LHCb
$S(B_d \rightarrow \eta' K)$	***	0.02	Belle II
$S(B_d \to K^*(\to K^0_S \pi^0)\gamma))$	***	0.03	Belle II
$S(B_s \to \phi \gamma))$	***	0.05	LHCb
$S(B_d \to \rho \gamma))$		0.15	Belle II
A_{SI}^d	***	0.001	LHCb
A_{SL}^s	***	0.001	LHCb
$A_{CP}^{SL}(B_d \rightarrow s\gamma)$	*	0.005	Belle II
rare decays			
$\mathcal{B}(B \rightarrow \tau \nu)$	**	3%	Belle II
$\mathcal{B}(B \to D \tau \nu)$		3%	Belle II
$\mathcal{B}(B_d \to \mu \nu)$	**	6%	Belle II
$\mathcal{B}(B_s \to \mu\mu)$	***	10%	LHCb
zero of $A_{FB}(B \rightarrow K^* \mu \mu)$	**	0.05	LHCb
$\mathcal{B}(B \to K^{(*)}\nu\nu)$	***	30%	Belle II
$\mathcal{B}(B \to s\gamma)$		4%	Belle II
$\mathcal{B}(B_s \to \gamma \gamma)$		$0.25 \cdot 10^{-6}$	Belle II (with 5 ab^{-1})
$\mathcal{B}(K \to \pi \nu \nu)$	**	10%	K-factory
$\mathcal{B}(K \to e \pi \nu) / \mathcal{B}(K \to \mu \pi \nu)$	***	0.1%	K-factory
charm and τ			
$\mathcal{B}(\tau \rightarrow \mu \gamma)$	***	$3 \cdot 10^{-9}$	Belle II
$ q/p _D$	***	0.03	Belle II
$arg(q/p)_D$	***	1.5°	Belle II

• Belle II:

- Decays with neutrinos, or multiple photons.
- "Inclusive" decays.
- Long-live particles: Kshorts & K-longs

• LHCb:

- Decays to all charged particle final states.
- Fast mixing.

Pre-SUSY School 2016, Flavour Physics