

Belle II experiment

Dmitri Liventsev (Virginia Tech/KEK)

on behalf of the Belle II collaboration

The 14th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon, Kyoto, Japan July 30, 2016

Outline

- From *B* to Super-*B*
- Accelerator
- Detector
- Physics
- Getting started

Kobayashi and Maskawa both worked in Kyoto university when writing their famous paper.

MENU2016 - July 30, 2016

B-factories

- BaBar: PEP-II e^+e^- collider, SLAC, USA, 1999–2008.
- Belle: KEKB e^+e^- collider, KEK, Tsukuba, Japan, 1999–2010.
- Combined BaBar and Belle luminosity is ~1.5 ab^{-1} (1.25*10° *BB* pairs).
- Main focus: *CP*-violation (published in 2001)
 - Also B-decays, CKM parameters, quarkonium(-like) states,
 - charm- and τ -physics etc.
 - (see talks by Miyabayashi-san,
 - Kato-san and Y.J.Kwon)
 - 500+ publications from BaBar, 400+ from Belle.
 - But still no observation of the New physics (NP)! Dmitri Liventsev (VPI/KEK) – Belle II experiment - 3/44

Looking for New physics

- Energy Frontier (direct): Production
 of new particles from collisions.
 Limited by beam energy (CMS, ATLAS).
- Flavor Frontier (indirect): Virtual production can probe scales to ~10 TeV or more, but effects are tiny (LHCb, Belle II).
- Virtual NP particles: asymmetries, rare decays, forbidden decays.
- No NP yet upgrade Belle and KEKB.

MENU2016 – July 30, 2016

Belle II and LHCb

Can Belle II compete with LHCb? Yes.

- Full solid angle detector and Clean event environment and well defined initial state of e⁺e⁻experiment:
 - Missing energy modes are a strength of Belle II and the *B*-factories; powerful constraints on the charged Higgs;
 - Modes with neutrals (although not impossible at LHCb) are another strength of Belle II;
 - Belle II does inclusive modes $(B \rightarrow X_S \gamma, B \rightarrow X_S \ell^+ \ell^-);$
 - Belle II but not LHCb does modes with K_s mesons including a significant fraction of the $b \rightarrow s$ penguin modes.

Outline

- From *B* to Super-*B*
- Accelerator
- Detector
- Physics
- Getting started

Quest for high luminosity

- There are two ways to increase luminosity:
 - Increase beam currents
 - Decrease beam size
- SuperKEKB uses
 - ~2x increase in currents

and

"nano-beams"

• 40x luminosity

	E(GEV) HER/LER	β* _y (mm) HER/LER	β* _x (mm) HER/LER	2φ (mrad)	I(A) HER/LER	L (cm ⁻² S ⁻¹)
KEKB	3.5/8.0	5.9/5.9	120/120	22	1.6/1.2	2.1x10 ³⁴
SuperKEKB	4.0/7.0	0.27/0.30	3.2/2.5	83	3.6/2.6	80x10 ³⁴

SuperKEKB accelerator

Replace short dipoles

A lot of modifications all around the accelerator.

SuperKEKB status

- LER: Approximately 93% of beam pipes in length are renewed.
- HER: Approximately 82% are reused.
- Sub systems, such as cooling water system, compressed air system, were basically reutilized, with necessary upgrades.
- Control system was also reused, but the antique components are updated.

Outline

- From *B* to Super-*B*
- Accelerator
- Detector
- Physics
- Getting started

Requirements for detector

- Higher beam-related and QED backgrounds;
- L1 trigger rate 30kHz vs 500Hz for Belle:
 - Stability to high background; fast readout;
 - Better performance (vertex resolution, tracking, PID, esp. improve K/π separation);
 - Less material in front of ECL (for better performance).

Not a simulation, just a naive illustration

MENU2016 - July 30, 2016

Dmitri Liventsev (VPI/KEK) – Belle II experiment - 11/44

Belle II detector

Belle II is built on basis of Belle

- Main structure and magnet are reused;
- ECL and KLM are mostly reused;
- Vertex detector,
 drift chamber,
 PID, partially KLM
 are upgraded;
- All electronics are replaced.

Detector improvements

- Smaller beam pipe radius allows to place the innermost PXD layer closer to the Interaction point (r = 1.4cm)
 - Significantly improves the vertex resolution along *z* direction.
- Pixel part of the vertex detector, larger SVD and CDC
 - Increases K_s efficiency, improve vertex and timing resolution, better flavor tagging.
- PID: TOP and ARICH
 - Better K/π separation covering the whole range momentum.
- ECL and KLM
 - Improvements in ECL and KLM to compensate for a larger beam background.
- Improved hermeticity.
- Improved trigger and DAQ.

MENU2016 - July 30, 2016

VXD=PXD+SVD

- Layers 1-2: Pixel detectors (PXD)
 - DEPFET pixels
 - 50μm thick
 - r=14mm and 22mm (vs 20mm minimum for Belle)
- Layers 3-6: Strip detectors (SVD)
 - 4 layers of DSSD detectors, well tested at Belle
 - Largest radius 135mm (vs 88mm for Belle)
- Dedicated PXD preDAQ for data rate reduction from ~8M channels (matching against tracks from SVD+CDC)

Impact parameter resolution d0

Dmitri Liventsev (VPI/KEK) - Belle II experiment - 14/44

VXD beam test in DESY

- Combined beam test of PXD and SVD
- Also test of DAQ, software, DB, CO₂ cooling, slow control, environmental sensors
- e^- beam, momentum 2-5GeV
- B-field in PCMag: 0-1T
- Total of ~340 runs in 4 weeks

Overall the campaign was a great success for the VXD!

2 PXD half-ladders (L1-L2)

Dmitri Liventsev (VPI/KEK) - Belle II experiment - 15/44

CDC

- Belle II Central Drift Chamber (CDC) is larger than that of Belle.
- Smaller drift cells with sense wires and more layers allow better charged track reconstruction and dE/dx measurement compared to Belle.
- Faster readout electronics

		Belle	Belle II
	Radius of inner boundary (mm)	88	168
	Radius of outer boundary (mm)	863	1111
	Number of layers	50	56
	Number of sense wires	8400	14336
	Gas	HeC ₂ H ₆	HeC ₂ H ₆
	Diameter of a sense wire (µm)	30	30

CDC status

- CDC construction is complete, CDC moved to the experimental hall next to Belle II detector.
- Cosmic ray test is ongoing, next is DAQ integration.
- The new CDC track finder is able to identify tracks on cosmic rays events with an efficiency close to 100% (i.e. each triggered event contains at least one track).
- A few interesting events with more than one particles are also correctly reconstructed. All the CDC hits are represented.
- The hits belonging to the same track are in same color.

CDC in the experimental hall

PID: TOP+ARICH

Two Cherenkov detectors for particle identification (mainly K and π)

- Barrel: Time of Propagation (TOP)
- Endcap: Aerogel Ring-Imaging Cherenkov (ARICH)

Much thinner than PID in Belle, less material in front of calorimeter.

TOP status

All TOP modules installed in May.

Comissioning with cosmic rays and DAQ tests are ongoing.

Full internal reflection of laser beam inside TOP quartz module

TOP: at 3GeV timing ~100ps is needed for K/π separation 20.5 500ps 300 350 400 450 500 Channel number

	Belle	Belle II (sim)
K eff	88%	94%
π fake rate	9%	4%

MENU2016 - July 30, 2016

ARICH status

- K/π separation at 5σ
- Radiator: Aerogel n=1.045-1.055
- Transmission length >40mm
- Photon detection: Hybrid Avalanche Photo Detectors (HAPD)
- 420 units, 144 channels each Gain = 7*10⁵, QE > 28%
- Production/assembly state, installation schedule under discussion.

ECL

- Belle II electromagnetic calorimeter (ECL) reuses Belle CsI (TI) crystals and installs improved readout electronics with a waveform sampling to compensate for higher beam-related background.
- R&D to replace in future endcap crystals with pure CsI with faster light emission and smaller light yield.
- ECL readout electronics was installed and DAQ integration tests are going on.

KLM

The outermost detector for $K_L - \mu$ detection

- Endcap muon detecton based on RPC will not work at design luminosity and higher background. The inner barrel layers efficiencies would also be small.
- Replace RPCs in the endcaps and two inner barrel layers with scintillator strips with WLS fibers and MPPC detectors.

Installation of KLM

 KLM installation was completed, ~½ of the readout electronics were installed and DAQ integration tests are going on.

Outline

- From *B* to Super-*B*
- Accelerator
- Detector
- Physics
- Getting started

Credit: Nature Methods, Le Maho, et. al.

Physics at Belle II

Since NP is not discovered yet, its manifestations are unknown. We should look everywhere. Our focus is on

- Precise CKM measurements,
- CPV in quarks and charged leptons,
- Missing energy studies:
 - $B \rightarrow \ell \nu$,
 - $B \rightarrow D^{(*)} \tau v$,
- Charged LFV: $\tau \rightarrow \ell \gamma, \tau \rightarrow \ell \ell \ell, \ell = e, \mu,$
- Quarkonium,
- Low multiplicity events.

Just noise? Look closer!

Unitary triangle

- Unitary triangle changed dramatically in *B*-factories era.
- But is it really a triangle? Current $\alpha+\beta+\gamma = (175\pm9)^{\circ}$ (PDG), Belle II expects to improve the precision to $\alpha\sim0.3^{\circ}$, $\beta\sim1.0^{\circ}$, $\gamma\sim1.5^{\circ}$.
- Improvement in precision should help to resolve the tension between inclusive and exclusive measurements of $|V_{ub}|$ and $|V_{cb}|$.

Reconstruction with tagging

0.4

 $\Delta \chi^2 = 1.0$

HFAG

0.6

R(D)

0.5

Belle II with 50/ab

Physics at 50 ab⁻¹

Parameterize NP contributions to the $B_{d,s}$ mixing amplitudes as $M_{12}^{d,s} = (M_{12}^{d,s})_{CM} x(1+h_{d,s} exp(2i\sigma_{d,s}))$ Phys Rev D89, 033016 (2014)

Dmitri Liventsev (VPI/KEK) - Belle II experiment - 27/44

Physics at 50 ab⁻¹

		Observables	Belle or LHCb [*]	Be	elle II	LHO	Ĵb
Belle II			(2014)	5 ab^{-1}	50 ab^{-1}	1 8 fb ⁻¹ (2018	$3) 50 \text{ fb}^{-1}$
Noto 21	UT angles	$\sin 2\beta$	$0.667 \pm 0.023 \pm 0.012 (1.4^\circ)$	0.7°	0.4°	1.6°	0.6°
		α [°]	85 ± 4 (Belle+BaBar)	2	1		
9 [™] Belle PAC		$\gamma \ [^{\circ}] \ (B \to D^{(*)} K^{(*)})$	68 ± 14	6	1.5	4	1
D I Irauijo tolk		$2\beta_s(B_s \to J/\psi\phi)$ [rad]	$0.07 \pm 0.09 \pm 0.01^*$			0.025	0.009
P.OIYUJU laik	Gluonic penguins	$S(B \to \phi K^0)$	$0.90\substack{+0.09\\-0.19}$	0.053	0.018	0.2	0.04
		$S(B ightarrow \eta' K^0)$	$0.68 \pm 0.07 \pm 0.03$	0.028	0.011		
		$S(B\to K^0_S K^0_S K^0_S)$	$0.30 \pm 0.32 \pm 0.08$	0.100	0.033		
		$\beta_s^{\text{eff}}(B_s \to \phi \phi) \text{ [rad]}$	$-0.17\pm0.15\pm0.03^*$			0.12	0.03
		$\beta_s^{\text{eff}}(B_s \to K^{*0} \bar{K}^{*0}) \text{ [rad]}$	_			0.13	0.03
	Direct CP in hadronic Decays	$\mathcal{A}(B \to K^0 \pi^0)$	$-0.05 \pm 0.14 \pm 0.05$	0.07	0.04		
	UT sides	$ V_{cb} $ incl.	$41.6 \cdot 10^{-3} (1 \pm 2.4\%)$	1.2%			
		$ V_{cb} $ excl.	$37.5 \cdot 10^{-3} (1 \pm 3.0\%_{ex.} \pm 2.7\%_{th.})$	1.8%	1.4%		
		$ V_{ub} $ incl.	$4.47\cdot 10^{-3}(1\pm 6.0\%_{\rm ex.}\pm 2.5\%_{\rm th.})$	3.4%	3.0%		
		$ V_{ub} $ excl. (had. tag.)	$3.52\cdot 10^{-3}(1\pm 10.8\%)$	4.7%	2.4%		
	Leptonic and Semi-tauonic	$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	$96(1 \pm 26\%)$	10%	5%		
		$\mathcal{B}(B\to\mu\nu)~[10^{-6}]$	< 1.7	20%	7%		
		$R(B \to D \tau \nu)$ [Had. tag]	$0.440(1\pm16.5\%)^{\dagger}$	5.6%	3.4%		
		$R(B\to D^*\tau\nu)^\dagger$ [Had. tag]	$0.332(1\pm9.0\%)^{\dagger}$	3.2%	2.1%		
	Radiative	$\mathcal{B}(B \to X_s \gamma)$	$3.45\cdot 10^{-4} (1\pm 4.3\%\pm 11.6\%)$	7%	6%		
		$A_{CP}(B \to X_{s,d}\gamma) \ [10^{-2}]$	$2.2\pm4.0\pm0.8$	1	0.5		
		$S(B\to K^0_S\pi^0\gamma)$	$-0.10 \pm 0.31 \pm 0.07$	0.11	0.035		
		$2\beta_s^{\text{eff}}(B_s \to \phi \gamma)$	_			0.13	0.03
		$S(B\to\rho\gamma)$	$-0.83 \pm 0.65 \pm 0.18$	0.23	0.07		
		$\mathcal{B}(B_s \to \gamma \gamma) \ [10^{-6}]$	< 8.7	0.3	_		
	Electroweak penguins	$\mathcal{B}(B \to K^{*+} \nu \overline{\nu}) \ [10^{-6}]$	< 40	< 15	30%		
		$\mathcal{B}(B \to K^+ \nu \overline{\nu}) \ [10^{-6}]$	< 55	< 21	30%		
		$C_7/C_9 \ (B \to X_s \ell \ell)$	${\sim}20\%$	10%	5%		
		$\mathcal{B}(B_s \to \tau \tau) \ [10^{-3}]$	_	< 2	_		
		$\mathcal{B}(B_s \to \mu \mu) \ [10^{-9}]$	$2.9^{+1.1*}_{-1.0}$			0.5	0.2

Theoretical workshops

- Series of experimental-theoretical workshops for development of Belle II physics program "Belle II Theory Interface Platform" (B2TiP).
- It is a joint effort of both theorists and experimentalists to have a close communication.
- Aim at delivering a full report in spring 2017.
- The last workshop was held in Pittsburgh in May 23-26.
- 9 working groups: semileptonic and leptonic *B* decays, radiative and EWP *B* decays, time dependent CPV, Phi 3, hadronic *B* decays, charm, quarkonium, low multiplicity, new physics.

Dmitri Liventsev (VPI/KEK) – Belle II experiment - 29/44

Software and MC

- Belle II analysis software framework (basf2) is being actively developed.
- 5 MC (6th has started) campaigns to estimate, measure, mitigate, and protect against beam backgrounds.
- Sample MC analyses with the new software.
- Belle II uses GRID for computing. ~40 computing sites in 18 countries (Australia, Austria, Canada, China, Czeck R., France, Germany, India, Italy, Japan, Korea, Poland, Russia, Slovenia, Taiwan, Turkey, Mexico, USA).

	2016	2017	2018	2019	2020	2021	2022	2023	2024
Tape (PB)	1.04	2.26	3.6	16.88	39.09	81.09	132.02	182.94	233.86
Disk (PB)	4.07	8.52	9.25	33.72	47.94	80.84	120.73	160.62	200.51
CPU (kHS)	219	310	357	506	653	749	1035	1262	1489

Dmitri Liventsev (VPI/KEK) - Belle II experiment - 30/44

Outline

- From *B* to Super-*B*
- Accelerator
- Detector
- Physics
- Getting started

SuperKEKB phase 1

SuperKEKB first started in February and worked until June (Phase 1).

- Startup of each hardware system
- Establish beam operation software tools
- Preparation for installation of Belle-II detector
 - Enough vacuum scrubbing
 - Request from Belle II group: ~1 month vacuum scrubbing with beam current of 0.5~1A (360~720Ah).
 - Beam background study with test detector (named BEAST)
- High beam current operation
 - Find and solve problems associated with high beam current operation
- Optics study w/o IR (no detector solenoid)
 - Low emittance tuning
- Other machine studies

Dmitri Liventsev (VPI/KEK) – Belle II experiment - 33/44

SuperKEKB phase 1 results

- Faster startup than KEKB...
 - KEKB beam currents achieved after first 3 months
 - LER: ~300mA, HER: ~200mA
 - SuperKEKB beam currents achieved after first 3 months LER: ~650mA, HER: ~590mA
 - Compared with KEKB...
 - Each hardware component has been upgraded with experiences at KEK and has worked fine (RF, Magnet, Vacuum...)
 - The bunch-by-bunch feedback system has more effectively suppressed instabilities.
 - Operational tools (such as closed orbit correction system) has worked fine based on experiences at KEKB.
 - Less machine troubles than KEKB so far.

MENU2016 - July 30, 2016

BEAST II

- Due to high beam currents, small beam size and higher luminosity, predicted SuperKEKB Beam background is 40 times higher than at KEKB.
- Background is reduced by installing moveable collimators and adding shielding near the final focus magnets.
- Beam Exorcism for a Stable ExperimenT II (BEAST II): measure and characterize beam background for safe roll-in of Belle II.
- Provide feedback to SuperKEKB.
- First comparison of simulation with experimental data.
- Seven independent BEAST II sub-detectors to measure beam loss backgrounds

	System	Number of detectors	Measurement	
	"CLAWS" scintillator	8	Injection background	
	Diamonds	4	lonizing radiation dose	
	PIN Diodes	64	Neutral vs charged ionizing dose	
	BGO	8	Luminosity	
	Crystals	6 CsI(TI) 6 CsI 6 LYSO	EM energy spectrum	
	He-3 tubes	4	Thermal neutron flux	
	Micro TPCs	2	Fast neutron flux	

Dmitri Liventsev (VPI/KEK) – Belle II experiment - 35/44

BEAST II results

- Early stage: LER/HER first turns seen by BEAST sensors.
- Vacuum scrubbing progress seen by BEAST sensors.
- "Vacuum burst"(dust capture) events seen by BEAST sensors.
- Provide "live" display of injection BG.
- Collimators are proven to reduce BEAST BG (incl. injection BG).
- Analysis of the results and comparison with simulation is ongoing.

Schedule

- July 2016 May 2017
 - QCS installation, cooling etc
- October 2016 June 2017
 - CDC, ARICH installation
- December 2016
 - Belle II roll in
- November 2017 March 2018
 - Phase 2 operation
 - Beta function squeezing, collision tuning
 - Belle II w/o VXD physics run
- April June 2018
 - VXD installation
- October 2018 ...
 - Full Belle II detector physics run

Dmitri Liventsev (VPI/KEK) – Belle II experiment - 37/44

Summary

- TOP, ECL, KLM are installed. CDC is ready for installation. DAQ tests of individual systems with cosmic rays and their integration are ongoing.
- PXD, SVD, ARICH are in production/assembly state.
- Accelerator Phase 1 completed. SuperKEKB has been successfully switched on. It reached 1.01A current in the LER and 0.87A in the HER. Getting ready for Phase 2 with partial Belle II detector (w/o VXD) in 2017.
- Physics run is scheduled to start on 2018.
- Reach and promising physics program is further refined and extended in collaboration with theorists.

Backup

Belle II collaboration

https://www.belle2.org

Formed in 2008 on basis of the Belle collaboration.

631 collaborators, 100 institutions, 23 countries/regions.

BEASTII schematic view

Various measurements (fast charged particle, high-energy photons, thermal/MeV neutron, dosimetry, etc..) to validate beam loss simulation

Hiroyuki Nakayama (KEK)

21th ARC (June. 13-15, 2016)

MENU2016 - July 30, 2016

2

BEASTII run monitor

Good time resolution injection BG monitors

Directional neutron detection

40

Diode

64

20

ò

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Time since injection. (ms)

KLM tracks

As of June 21, we now see cosmic-ray tracks 😂

PXD module size

