

CP Violation in B-Physics: SM & Beyond

Key results from 2014-2016 + Belle II and LHCb upgrade prospects

https://www.facebook.com/belle2collab https://twitter.com/belle2collab

Phillip Urquijo The Uni. of Melbourne

MIAPP Workshop June 2016

CKM theory is highly predictive

large range of phenomena (particularly in B-physics), predicted by only 4 independent parameters relating the 9 CKM elements + G_F + m_q +QCD

CKM matrix is hierarchical

flavour sector of SM not necessarily replicated in any extended theories

CKM mechanism introduces CP violation

Only source of CPV in SM ($m_v=0$)

$$V_{CKM} = \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

Phillip URQUIJO

2

Jarlskog Invariant

 \bigcirc In the SM, CP violation expressed as the Jarlskog invariant ($\Delta^{\sim}2\%$)

$$F_{u}F_{d}J \neq 0$$

$$F_{u} = (m_{u}^{2} - m_{c}^{2})(m_{c}^{2} - m_{t}^{2})(m_{t}^{2} - m_{u}^{2})$$

$$F_{d} = (m_{d}^{2} - m_{s}^{2})(m_{s}^{2} - m_{b}^{2})(m_{b}^{2} - m_{d}^{2})$$

$$\operatorname{Im}(V_{ij}V_{kl}V_{il}^{*}V_{kj}^{*}) = J\sum_{m,n=1}^{3} \varepsilon_{ikm}\varepsilon_{jln}$$

$$J = c_{12}c_{23}c_{13}^{2}s_{12}s_{23}s_{13}\sin\delta$$

- 3 gen. mixing and CPV phase (δ) necessary for CP violation.
- Feature of SM: J can be predicted from CP conserving quantities

Unitarity Triangle Test

 $B \rightarrow \pi\pi, \rho\rho$ $B \rightarrow D^{(*)} K^{(*)}$ $B \rightarrow J/\psi K_s$ $B_s \rightarrow J/\psi \Phi$ $K \rightarrow \pi v anti-v$

 $\alpha/\Phi_2 \qquad B \rightarrow D \mid v \mid b \rightarrow c \mid v$ $\gamma/\Phi_3 \qquad B \rightarrow \pi \mid v \mid b \rightarrow u \mid v$ $\beta/\Phi_1 \qquad M \rightarrow l \mid v \mid v$ $\beta_s/\Phi_s \qquad \varepsilon_K$ $\rho, \eta \qquad \Delta m_d, \Delta m_s$ $B_{(s)} \rightarrow \mu + \mu$ |V_{cb}| via Form factor / OPE
|V_{ub}| via Form factor / OPE
|V_{UD}| via Decay constant f_M
(ρ, η) via B_K
|V_{tb} V_{t{d,s}}| via Bag factor B_B
|V_{t{d,s}}| via Decay constant f_B

Classification of CP-violating Effects

$$|B_L\rangle = p|B^0\rangle + q|\overline{B}^0\rangle, \ |B_H\rangle = p|B^0\rangle - q|\overline{B}^0\rangle$$

• Condition for CP conservation $|\langle f_{\rm CP}|H|P^0(t)\rangle|^2 = |\langle f_{\rm CP}|H|\bar{P}^0(t)\rangle|^2$

- CP violation in the decay (direct CP violation)
- CP violation in mixing (indirect CP violation)
- CP violation in mixing/ decay interference

$$\Gamma(P \to f) \neq \Gamma(\bar{P} \to \bar{f}) \Leftrightarrow \left|\frac{\bar{A}_{\bar{f}}}{A_f}\right| \neq 1$$

$$\Gamma(P^0 \to \bar{P}^0) \neq \Gamma(\bar{P}^0 \to P^0) \Leftrightarrow \left|\frac{q}{p}\right| \neq 1$$

$$\Gamma(P^0(\rightsquigarrow \bar{P}^0) \to f)(t) \neq \Gamma(\bar{P}^0(\rightsquigarrow P^0) \to f)(t)$$

Observing CPV

Basic idea: two interfering amplitudes that involve the CKM parameter η .

$$\begin{split} |A|^2 = & |A|^2 = \\ A_1^2 + A_2^2 + 2A_1A_2\cos(\Delta\phi + \Delta\delta) & A_1^2 + A_2^2 + 2A_1A_2\cos(-\Delta\phi + \Delta\delta) \end{split}$$

For CPV A₁ and A₂ need to have **different weak phases** Φ and different **CP invariant (e.g. strong) phases** δ

MIAPP Workshop

 Accuracy of *predictions* of CP asymmetries in the quark sector depend on the possibility to get rid of hadronic effects, or to compute them.

***	Φ ₃	exact at LO of weak int.
* * *	A ^{s∟} (d,s), A(b→s+d γ)	SM vanishingly small
**	Φ1, Φs	Penguins contribute
*	ϵ_{κ} , B direct CP, Φ_2	Non-trivial had input
*/?	ε'/ε, rare B, D system	Requires more progress

7

B Production (See C. Kiesling's talk on Belle II)

	e+e- (PEPII, KEKB)	e+e- (Super KEKB)	pp→b anti-bX (√s=13TeV) LHC
Prod. σbb	1 nb		~500µb
typ. bb rate	10 Hz	400Hz	~500kHz
Total yield of B anti-B pairs	450 10 ⁶ Babar 770 10 ⁶ Belle	50 10 ⁹ Belle II	10 ¹³ (3 fb ⁻¹ @ LHCb)
purity	~25	5%	~0.6%
pile-up	0		0.5→25
B content	B ⁺ (50%),B ⁰ (50%)		B ⁺ (40%),B ⁰ (40%),B _s (10%),B _c (<1%),b-baryon(10%)
B boost	small, βγ~0.5		large, decay vertices are displaced
event structure BB pair alone, hermetic detector		Many particles not associated to b, non hermetic detector	
B ⁰ anti-B ⁰ mixing coherent		incoherent→flavour tagging dilution	

LHCb Vs Belle II

LHCb Vs Belle II

LHCb Vs Belle II

Topics

Time Dependent CP Violation

- Direct CP Violation
- CP Violation in mixing
- OT Precision Tests
- Areas to watch

Time Dependent CP Violation

Measurement of angle Φ_1 using CP eigenstates

CP violation in interference between **decay** w/ and w/o **mixing**

The "Golden Decay":

 $B^0 \rightarrow J/\Psi K^0$

 $\frac{\text{decay}}{\text{arg}(V_{cs}V_{cb}^*) - \text{arg}(V_{td}^2V_{tb}^2V_{cb}V_{cs}^*V_{cs}^2V_{cd}^{*2}) = -2\Phi_1}$

Example of a Fully-reconstructed Event

MIAPP Workshop

sin $2\Phi_1$

 Penguin contamination enters at ~1% - can be controlled with data.

MIAPP Workshop

Phillip URQUIJO

MELBOURNE

15

Looking for new physics in Time Dep. CPV

Increasing Tree diagram amplitude

Increasing NP sensitivity

Penguin sin $2\Phi_1$

MIAPP Workshop

Penguin Φ_1 : Future

Belle II should do better on penguin Φ_1 . Systematics dominated by vertex resolution: $\sigma(z)$ on Vertex: Belle~61µm \ddagger Belle II~18µm

Prospect: $\delta S(b \rightarrow s)^{\sim} 0.012 @ 50 ab^{-1}$

Penguin Φ_1 : Future

MIAPP Workshop

 Φ_1 from Radiative Penguin Modes

SM EW purely L-handed.

Right-handed current is a signature of NP

MELBOURNE

 Φ_2 & Isospin analysis (also applies to direct CPV)

$$2\phi_2 = \phi\left(\boxed{}\right) + \phi\left(\boxed{}_{V_{ub}} \right) + \phi\left(\boxed{}_{V_{ub}} \right)$$

 $b \rightarrow u$ anti-u d in strict isospin limit, penguin contractions transform differently

In B $\rightarrow \pi\pi$ and B $\rightarrow \rho\rho$, a triangle construction allows a clean extraction of Φ_2 to an 8-fold discrete ambiguity $\phi_2 = \arg\left(-\frac{V_{td}V_{tb}^*}{V_{td}V_{tb}^*}\right)$ to an 8-fold discrete ambiguity

> **A**₀₀ $A_{+-}: B^0 \rightarrow h^+ h^ 1 - A_{CP}^2 \sin(2(\phi_2 + \Delta \phi_2))$ \overline{A}_{+-} : $\overline{B}^0 \to h^+ h^ S_{CP} =$ $A_{00}: B^0 \rightarrow h^0 h^0$ \overline{A}_{00} : $\overline{B}^0 \to h^0 h^0$ **2**∆∮ $A_{+0}: B^+ \rightarrow h^+ h^0$ $(h = \pi, \rho)$ Gronau, London PRL65, 3381 (1990) Phillip URQUIJO 20

MIAPP Workshop

$B^0 \rightarrow \rho^+ \rho^-$ analysis

Belle PRD 93, 032010 (2016) Belle PRD89, 072009 (2014)

- Vector-vector final state is mixture of CP-even &-odd
- Predicted to be almost fully longitudinally polarized=CP-even
- Time-dependent 9-parameter ML fit

Φ_2 Grand combination

MIAPP Workshop

LHCb time dependent CPV

LHCb, JINST 11 (2016) P05010, JINST 10 P10005 (2015)

- $B_s^0 \rightarrow \Phi J/\psi$
- flavour tag ε~3%

LHCb, PRL 114 (2015) 041801

MELBOURNE

Mixing: $\phi_M = 2 \arg(V_{tb} V_{ts}^*)$

 $y_{ig \bullet}$

x

 θ_{i}

 K^+

LHCb

 $\phi_s^{c\bar{c}s} = -0.033 \pm 0.033$ rad $\Delta\Gamma_{s} = 0.083 \pm 0.006 \text{ ps}^{-1}$

[arXiv:1511.09466] [CKMfitter, PRD 84 (2011) 033005]

$$\begin{split} \phi_s^{\rm c\bar{c}s} &= -0.0376 \ ^{+0.0008}_{-0.0007} \ {\rm rad} \\ \Delta\Gamma_s &= 0.088 \pm 0.020 \ {\rm ps}^{-1} \end{split}$$

Direct CP Violation

Φ_3/γ Determination

- \bigcirc Theory is "pristine" in these approaches, << 1% on Φ_3
- Accessed via interference between $B^- \rightarrow D^0 K^-$ and $B^- \rightarrow anti D^0 K^-$

$$r_B = \frac{|A_{\text{suppressed}}|}{|A_{\text{favoured}}|} \approx \frac{V_{ub}V_{cs}^*}{V_{cb}V_{us}^*} \times [\text{colour supp.}] = 0.1 - 0.2$$

Relative weak phase is Φ_3 , Relative strong phase is δ_R

3 D⁰ mode categories:

- D_{CP}, CP eigenstates [GLW]
- D_{sup}, Doubly cabibbo suppressed [ADS]
- 3-Body [GGSZ]

3 B modes: D*K, DK, DK*

$D \rightarrow K\pi$ (favoured)

- small asymmetries due to production and detection effects
- B→Dπ control mode helps to separate effects

 $D \rightarrow \pi K$ ("ADS" suppressed)

- large CP violating asymmetries –
- first 5σ observation in a single
 B→DK channel

Φ_3/γ Results

Impact of LHCb is striking, with massive improvements since 2010.

Belle PTEP 043C01 (2016) LHCb-Paper-2015-059 LHCb-Paper-2016-003 LHCb-Paper-2016-006 LHCb-Paper-2016-007 LHCb-Conf-2016-001

Φ_3/γ Results

Impact of LHCb is striking, with massive improvements since 2010.

Belle PTEP 043C01 (2016) LHCb-Paper-2015-059 LHCb-Paper-2016-003 LHCb-Paper-2016-006 LHCb-Paper-2016-007 LHCb-Conf-2016-001

Φ_3/γ Results

Belle PTEP 043C01 (2016) LHCb-Paper-2015-059 LHCb-Paper-2016-003 LHCb-Paper-2016-006 LHCb-Paper-2016-007 LHCb-Conf-2016-001

Direct CP Violation in charmless hadronic decays

First evidence 2008

Belle, PRD87, 031103(R)(2013) Belle, Nature 452, 332 (2008)

 \bigcirc Unexpected difference in Acp between B⁺ and B⁰ \rightarrow K π

Direct CPV in $B \rightarrow K\pi$: Future

MIAPP Workshop

• "isospin sum rule approach" can constrain QCD effects.

$B \rightarrow K h h, B \rightarrow \pi h h @ LHCb$

- Puzzling patterns of CPV in $B^{\pm} \rightarrow K^{\pm}h^{+}h^{-}$ and $B^{\pm} \rightarrow \pi^{\pm}h^{+}h^{-}$
- Large local asymmetries in regions not associated to resonances
 - Possibly final state re-scattering generates strong phase difference

B.Bhattacharya, M. Gronau, J. Rosner Phys.Lett. B726 (2013) 337-343

We have examined the CP asymmetries in three-body decays of B^{\pm} mesons to charged pions and kaons. Predictions of ratios of asymmetries on the basis of U-spin are seen to be obeyed qualitatively, with violations ascribable to resonant substructure differing for $\pi^+\pi^-$ and K^+K^- substates. Larger CP asymmetries for regions of the Dalitz plot involving low effective mass of these substates can be undertood qualitatively in terms of large final-state strong phases; the weak phases are conducive to such large asymmetries, being nearly maximal. We conclude that further resolution of this problem must rely either on a deeper understanding of the resonant substructure in $B \to PPP$ decays, or further understanding of the hadronization process independently of resonances. We have argued that the approximately equal magnitudes and opposite signs measured for asymmetries in $B^+ \to \pi^+\pi^+\pi^-$ and $B^+ \to K^+\pi^+\pi^-$ may follow from the closure of low-mass $\pi^+\pi^-$ and K^+K^- channels involving only $\pi\pi \leftrightarrow K\bar{K}$ rescattering.

$$\mathcal{A}_{CP}(\bar{B} \to X_{s+d}\gamma) \equiv \frac{\Gamma(\bar{B} \to X_{s+d}\gamma) - \Gamma(B \to X_{\bar{s}+\bar{d}}\gamma)}{\Gamma(\bar{B} \to X_{s+d}\gamma) + \Gamma(B \to X_{\bar{s}+\bar{d}}\gamma)}.$$

Belle, ACP(b→s+d γ) PRL 114, 151601 (2015) Babar, ACP(b→s γ), PRD 90 092001 (2014)

> $-0.6\% < ACP(B \rightarrow X_S\gamma) < 2.8\%$ and $-62\% < ACP(B \rightarrow X_d\gamma) < 14\%$

Precision Null Test in SM

CP violating contributions and their errors cancel almost perfectly up to small U-spin breaking corrections

CP Violation in Mixing

|V_{td}/V_{ts}| from mixing (CP-conserving)

Δm_s precisely known

- Δm_s = 17.768 ± 0.023 ± 0.006 ps⁻¹
- limitation on $|V_{td}/V_{ts}|$ from lattice new prelim. measurement of Δm_d

MELBOURNE

LHCb NJP 15 (2013) 053021 LHCb-PAPER-2015-031 ETM 1603.04306

Fermilab/MILC 1602.03560

CP violation in mixing

a_s^{sl} and a_d^{sl} with full Run1 dataset (3/fb)

$$A_{\text{raw}}(t) = \underbrace{\frac{N(f,t) - N(\bar{f},t)}{N(f,t) + N(\bar{f},t)}}_{N(f,t) + N(\bar{f},t)} \approx \underbrace{A_D} + \underbrace{\frac{a_{\text{sl}}^d}{2}}_{l} + \underbrace{\left(A_P - \frac{a_{\text{sl}}^d}{2}\right)}_{l} \cos(\Delta m_d t)$$

$$M(D \ \mu^+) + \underbrace{\text{Offset}}_{l} \mu^+) = \underbrace{\text{Amplitude}}_{l} \mu^+$$

$$Mixing$$
Production asymmetry:
$$A_P = \frac{N(B) - N(\bar{B})}{N(B) + N(\bar{B})}$$

$$Detection asymmetry:
$$A_D = \frac{\epsilon(D^-\mu^+) - \epsilon(D^+\mu^-)}{\epsilon(D^-\mu^+) + \epsilon(D^+\mu^-)}$$

$$\underbrace{\int_{l} \frac{1}{1 + \frac{1}{1$$$$

MIAPP Workshop

CP violation in mixing

HFAG, arXiv:1412.7515

$q^2(B \rightarrow \pi \mid v)$ <u>×10</u>-6 ΔΒ/Δ q² (GeV²) 8 01 71 8 Exclusive PDG Inclusive Belle untagged Theory prediction used in fit version Belle hadronic tag Theory prediction not used in fit BaBar untagged (6 bins) LQCD (high q²): FNAL/MILC 2004 BaBar untagged (12 bins) LCSR (low q²): Bharucha 10 Fitted BCL param. (3+1 par.) 2006 8 2008 6 2010 B 2012 4 2014 2 HFAG PDG 2014 0.005 0.003 0.004 0) 25^{°°} q² (GeV²) 5 20 15 10 N ub

 $|V_{ub}|$ exclusive HFAG = (3.28 ± 0.29) × 10⁻³

HFAG, arXiv:1412.7515

$q^2(B \rightarrow \pi \mid v)$ <u>×10</u>-6 ΔΒ/Δ q² (GeV²) 8 01 71 8 Belle untagged Theory prediction used in fit w/o |V_ub| ---- semilept. aver. Belle hadronic tag Theory prediction not used in fit BaBar untagged (6 bins) LQCD (high q²): FNAL/MILC excl. - - -BaBar untagged (12 bins) LCSR (low q²): Bharucha incl. Fitted BCL param. (3+1 par.) 1.0 8 0.8 0.6 6 0.4 4 0.2 2 HFAG 0.0 0.0030 0.0035 0.0040 0.0045 0.0050 0.0055 0.0025 PDG 2014 |V__| 0 IV) 25^{°°} q² (GeV²) 5 20 10 15 N ub

 $|V_{ub}|$ exclusive HFAG = (3.28 ± 0.29) × 10⁻³

IVIIKE VVIIIIAMS, IN U8:30

LHCb, Nature Physics 10 (2015) 1038

$$\frac{|V_{ub}|^{2}}{|V_{cb}|^{2}} = \frac{\int_{15 \text{ GeV}^{2}}^{2} \frac{d\Gamma(\Lambda_{b} \to \Lambda_{c} \mu - \bar{\nu}_{\mu})}{dq^{2}} dq^{2}}{\int_{7 \text{ GeV}^{2}}^{2} \frac{d\Gamma(\Lambda_{b} \to \Lambda_{c} \mu - \bar{\nu}_{\mu})}{dq^{2}} dq^{2}} (0.68 \pm 0.07)$$

$$|80| \frac{|V_{ub}|}{|V_{cb}|} = 0.083 \pm 0.004 \pm 0.004$$

$$\frac{|V_{ub}|}{|V_{cb}|} = 0.083 \pm 0.004 \pm 0.004$$

$$\frac{|V_{ub}|}{|V_{cb}|} = 0.083 \pm 0.004 \pm 0.004$$

$$\frac{|V_{ub}|}{|V_{cb}|} = 0.0033 \pm 0.004 \pm 0.004$$

$$\frac{|V_{ub}|}{|V_{ub}|} = 0.004 \pm 0.$$

Restored Left-Right Symmetry?

• Add new physics: *right handed currents* with coupling Vub^R

- $B \rightarrow \pi | v \text{ rate goes as } | V_{ub}^{L} + V_{ub}^{R} |^2$
- $B \rightarrow \tau v$ rate goes as $|V_{ub}^{L} V_{ub}^{R}|^{2}$
- $B \rightarrow X_u | v \text{ rate goes as } |V_{ub}^L| + |V_{ub}^R|^2$

1. SU(2)_L x SU(2)_R x U(1)_{B-L}

- → New heavy gauge bosons (W', Z', H).
- \rightarrow V_L = V_{CKM} and V_R
 - 5 more CP phases.

Restored Left-Right Symmetry?

• Add new physics: *right handed currents* with coupling Vub^R

- $B \rightarrow \pi | v \text{ rate goes as } | V_{ub}^{L} + V_{ub}^{R} |^2$
- $B \rightarrow \tau v$ rate goes as $|V_{ub}^{L} V_{ub}^{R}|^{2}$
- $B \rightarrow X_u | v \text{ rate goes as } |V_{ub}^L| + |V_{ub}^R|^2$

1. SU(2)_L x SU(2)_R x U(1)_{B-L}

- → New heavy gauge bosons (W', Z', H).
- \rightarrow V_L = V_{CKM} and V_R - 5 more CP phases.

MIAPP Workshop

Summary of CKM Metrology

	Belle	BaBar	Global Fit CKMfitter	LHCb Run-2	Belle II 50 ab ⁻¹ (2024)	LHCb Upgrade 50 fb ⁻¹ (2030)	Theory
ф ₁ : ccs	0.9°		0.9°	0.6°	0.3°	0.3°	small
φ₂: uud		4° _(WA)	2.1 °		1 °		~1-2°
ф ₃ : DК	14º		2.5°	4º	1.5°	1 °	tiny
V _{cb} ^{inclusive}	1.7%		2.4%		1.2%		
V _{cb} ^{exclusive}	2.2%				1.4%		
V _{ub} ^{inclusive}	7%		4.5%		2.2%		
V _{ub} ^{exclusive}	<mark>5%</mark>			7%**	2.0%	4%**	
Experime	nt M M Pi	o result oderate recise ery Precise		7	heory	Moderate Clean / LQC Clean	D
	P Worksł	пор		Phillip URC	OIID	44	

CKMFitter global fit, Input parameters

Modulus & Sides

Mixing

CP Phase

Data = weak \otimes **QCD** \rightarrow need hadronic inputs; often LQCD with our own Rfit-based averaging scheme.

V _{ud}	β decays	PRC 055502 (2009)	fitte
Vus	K _{I3} (Flavianet)	f+(0)=0.9645 ±0.0015±0.0045	
	$K \to I \; v$, $\tau \to K \; v$	f _K = (155.2±0.2±0.6) MeV	
V _{us} /V _{ud}	$K \rightarrow Iv / \pi \rightarrow Iv$, $\tau \rightarrow Kv / \tau \rightarrow \pi v$	$f_{\rm K}/f_{\rm fr}$ = 1.1942±0.0009±0.0030	
V ub	Inclusive & Exclusive	(4.01±0.08±0.22) 10 ⁻³	
$B \to \tau \; v$	(1.08 ± 0.21) 10 ⁻⁴	f_{Bs}/f_{Bd} = 1.205 ± 0.003 ± 0.006 f_{Bs} = (224.0±1.0±2.0) MeV	
V _{cb}	Inclusive & Exclusive	(41.00±0.33±0.74) 10 ⁻³	
$ V_{ub} / V_{cb} $	$Br(\Lambda_b \rightarrow p\mu v)/Br(\Lambda_b \rightarrow \Lambda_c \mu v)$	$(1.00 \pm 0.09) \ 10^{-2}$	
Δm_d	B _d mixing	B_{Bs}/B_{Bd} = 1.023 ± 0.013 ± 0.01	4
Δm_s	B _s mixing	$B_{Bs} = 1.320 \pm 0.017 \pm 0.030$	
εκ	PDG	$B_{\rm K}$ = 0.7615±0.0027±0.0137	
β / Φ 1	J/ψ K ^(*) WA	0.691±0.017	
α / Φ2	ππ,ρπ,ρρWA	Isospin, ~4°	
γ / Φ ₃	$B \to D^{(*)} K^{(*)}$	GLW/ADS/GGSZ, ~7°	
MIAPP V	Vorkshop	Phillip URQUIJO 45	

CKMfitter PRD 91. 073007 (2015). Consistency is only at the 5% level in global fit. $\lambda^2 \equiv \frac{|V_{us}|^2}{|V_{ud}|^2 + |V_{us}|^2} \qquad A^2 \lambda^4 \equiv \frac{|V_{cb}|^2}{|V_{ud}|^2 + |V_{us}|^2}$ 1.5 excluded at CL excluded area has CL > 0.95 ϕ_3 1.0 $\Delta m_{d} \& \Delta m_{s}$ $sin 2\phi_1$ 0.5 ∆m_d ε_K Ч 0.0 φ₂ Vub Φ2 Vub -0.5 -1.0 ε_K φ₃ sol. w/ cos $2\phi < 0$ fitter excl. at CL > 0.95) -1.5 -0.5 0.0 0.5 1.0 1.5 2.0 -1.0 $\overline{\rho}$ **MIAPP Workshop** Phillip URQUIJO 46

Generic Analyses for New Physics

$$\bar{\rho} + i\bar{\eta} = -\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}$$

Generic Analyses for New Physics CKMfitter PRD 91. 073007 (2015). Consistency is only at the 5% level in global fit. $\lambda^2 \equiv \frac{|V_{us}|^2}{|V_{ud}|^2 + |V_{us}|^2} \qquad A^2 \lambda^4 \equiv \frac{|V_{cb}|^2}{|V_{ud}|^2 + |V_{us}|^2} \qquad \bar{\rho} + i\bar{\eta} = -\frac{V_{ud}V_{ub}}{V_{cd}V_{cb}^*}$ 1.5 excluded at CL **B**_s→μμ 1.02 excluded area has CL > 0.95 φ_ 0.62 ϕ_3 γ 0.89 α 1.03 1.0 $\Delta m_{d} \& \Delta m_{s}$ sin 2β 1.74 0.00 εĸ sin 2₀₁ Δm_e 1.36 Δm_d 1.44 0.5 $B(B \rightarrow \tau v)$ Δm_d 1.46 IV I ub semilep 0.00 εĸ IV I Cb semilep $B(D \rightarrow \mu \nu)$ 0.00 0.56 Ч 0.0 **B(D** → μν) 1.06 Φ, Vub **B(D**[→]τ ν) 1.51 **\$**2 B(D→Kh) 0.00 Vub **B(D**→ πhν) 0.00 -0.5 IV I 0.00 IV I cd not lattice 0.42 B(TK2) 2.31 B(K_) 0.29 ε_K -1.0 B(K_) 1.43 B(K_) φ₃ sol. w/ cos $2\phi < 0$ 0.00 fitter I VI excl. at CL > 0.95) 0.00 -1.5 0.5 1.5 2 2.5 3 3.5 0 1 -0.5 0.0 0.5 1.0 1.5 2.0 -1.0 **Pull (**σ**)** $\overline{\rho}$ Phillip URQUIJO MIAPP Workshop 46

MELBOURNE

New Physics in mixing: past & future data

• Meson mixing,

- What is the scale Λ ? How different is C_{NP} from C_{SM} ?
- If deviation from SM seen \rightarrow upper bound on Λ
- Assume NP from Trees in negligible, test for NP in loops only i.e. New Physics only enters M₁₂, the real part of the mixing Hamiltonian.
- 3 x 3 CKM matrix is unitary.

$$M_{12} = M_{12}^{SM} \times \left(1 + he^{2i\sigma}\right)$$

MIAPP Workshop

NP in B_{d,s} & K mixing: Input

- Observables not affected by NP first used to constrain CKM:
 - $|V_{ud}|, |V_{us}|, |V_{cb}|, |V_{ub}|, \Phi_3 \text{ and } \Phi_2 = \pi \Phi_3 \Phi_{1eff}((c \text{ anti-c})K)$
- NP impact estimated from
 - Meson mixing Δm_s , Δm_d , $|\epsilon_K|$,
 - Lifetime difference $\Delta\Gamma_s$, & semileptonic asymmetry A_{SL} ,
 - Time dep. CP asymmetries β_s , Φ_1 , and Φ_2 (decay-mixing interference)

• Qualitative change after 2003: first Φ_3 and Φ_2 constraints

MIAPP Workshop

Phillip URQUIJO

MELBOURNE

NP in B_d mixing: Fit results

• at 95% NP \leq (many × SM) \Rightarrow NP \leq (0.3 × SM) \Rightarrow NP \leq (0.05 × SM)

	Couplings	NP loop	Scales (TeV) probed by	
$ C_{ii} ^2 (4\pi)^2 = C_{ii} ^2 (4.5 \text{ TeV})^2$	Couplings	order	B_d mixing	B_s mixing
$h \simeq 1.5 \frac{10}{10} \frac{ij}{10} \frac{(10)}{G} \simeq \frac{10}{10} \frac{ij}{10} \left(\frac{100}{10} \frac{10}{10} \right)$	$ C_q = V_{tb}V_{tq}^* $	tree level	17	19
$ \lambda_{ij}^{\iota} ^2 \ G_{ m F} \Lambda^2 = \lambda_{ij}^{\iota} ^2 \ igslash \Lambda$	(CKM-like)	one loop	1.4	1.5
$- \operatorname{arm}(C \setminus t^*)$	$ C_q = 1$	tree level	2×10^3	5×10^2
$\sigma = \arg(C_{ij}\lambda_{ij})$	(no hierarchy)	one loop	2×10^{2}	40

Stage II: similar sensitivity to gluino masses explored at LHC 14TeV

MIAPP Workshop

Areas to watch

Belle II Flagship: H⁺ Search in B⁺ $\rightarrow \tau \upsilon$, $\mu \upsilon$

$B \rightarrow \tau \nu$ Measurements

Belle, $B \rightarrow \tau v$ (Had) PRL110 131801 (2013) Belle, $B \rightarrow \tau v$ (SL) PRD 92, 5, 051102 (2015)

MIAPP Workshop

Phillip URQUIJO

53

Most curious hint of NP in heavy flavour

CERNCOURIER

Volume 55 Number 9 November 2015

MIAPP Workshop

Phillip URQUIJO

55

Most curious hint of NP in heavy flavour

Volume 55 Number 9 November 2015

SCIENTIFIC				Sign In Register 🦷 🚹			
AME	RICA	N™		Search ScientificAmeric	an.com	Q	
Subscribe	News & Features	Topics	Blogs	Videos & Podcasts	Education	Citizen Scien	
The Sciences » Ne	ws			= 13	= 🐱 Email	: 🖨 Print	

2 Accelerators Find Particles That May Break Known Laws of Physics

The LHC and the Belle experiment have found particle decay patterns that violate the Standard Model of particle physics, confirming earlier observations at the BaBar facility

By Clara Moskowitz | September 9, 2015 | Véalo en español

MIAPP Workshop

Most curious hint of NP in heavy flavour

Volume 55 Number 9 November 2015

Tensions in the Standard Model

SCIENTIFIC				Sign In Register 🦷 🕈			
AMERICAN [™]				Search ScientificAmerican.com		Q	
Subscribe	News & Features	Topics	Blogs	Videos & Podcasts	Education	Citizen Scien	
The Sciences » Ne	ws			= 13	= 😝 Email	: 🖨 Print	

2 Accelerators Find Particles That May Break Known Laws of Physics

The LHC and the Belle experiment have found particle decay patterns that violate the Standard Model of particle physics, confirming earlier observations at the BaBar facility

By Clara Moskowitz | September 9, 2015 | Véalo en español

Democracy suffers a blow-in particle physics

Three independent B-meson experiments suggest that the charged leptons may not be so equal after all.

Steven K. Blau 17 September 2015

MIAPP Workshop

Phillip URQUIJO

55

 $R(D^{(*)}) = BR(B \rightarrow D^{(*)} \tau \nu) / BR (B \rightarrow D^{(*)} \mu \nu)$

Babar, Phys.Rev.D 88, 072012 (2013) Belle, Phys.Rev.D 92, 072014 (2015) Belle, [arXiv:1603.06711] LHCb, PRL.115,111803 (2015)

- Reconstruct one B in Y(4S) \rightarrow BB event
 - Either hadronic (PR D92 (2015) 072014) or semileptonic (arXiv: 1603.06711) decay mode
 - First application of semileptonic tagging for $B \rightarrow D(*)\tau v$
- Look for signal in the recoil, $B \rightarrow D^* \tau v$, $D^* \rightarrow D\pi$, $D \rightarrow many$, $\tau \rightarrow lvv$,

 $R(D^*) = 0.302 \pm 0.030 \pm 0.011$

■ Identify $B \rightarrow D^* \tau v$, $D^* \rightarrow D\pi$, $D \rightarrow K\pi$, $\tau \rightarrow \mu v v$

• Assume $p_{B,z} = (p_{D^*} + p_{\mu})_z$ to calculate $M_{miss}^2 = (p_B - p_{D^*} - p_{\mu})^2$

 \bigcirc Require significant B, D, τ flight distances, fit in M_{miss}², q² and E_μ

We need more data! (more to come from Belle)

HFAG Winter 2016

MELBOURNE

We need more data! (more to come from Belle)

HFAG Winter 2016

MIAPP Workshop

 $B \rightarrow K^* \mid^+\mid^-$

- P_5' anomaly > 3.5 σ (Belle + LHCb)
- Analysis of longitudinal and transverse polarisation.

Belle, arXiv:1604.04042

Babar, JHEP 1602 (2016) 104

5.24

Pull

5.26

5.28

^{5.28} M_{bc} (GeV/c²)

Golden modes: B physics

PU, j.nuclphysbps 263–264 (2015) 15–23

	Observables Belle			e II
		(2014)	5 ab^{-1}	50 ab^{-1}
UT angles	$\sin 2\beta$	$0.667 \pm 0.023 \pm 0.012$ [64]	0.012	0.008
	α [°]	85 ± 4 (Belle+BaBar) [24]	2	1
	$\gamma~[^{\circ}]$	68 ± 14 [13]	6	1.5
Gluonic penguins	$S(B \to \phi K^0)$	$0.90^{+0.09}_{-0.19}$ [19]	0.053	0.018
	$S(B\to\eta' K^0)$	$0.68 \pm 0.07 \pm 0.03$ [65]	0.028	0.011
	$S(B\to K^0_S K^0_S K^0_S)$	$0.30 \pm 0.32 \pm 0.08$ [17]	0.100	0.033
	$\mathcal{A}(B \to K^0 \pi^0)$	$-0.05 \pm 0.14 \pm 0.05$ [66]	0.07	0.04
UT sides	$ V_{cb} $ incl.	$41.6 \cdot 10^{-3} (1 \pm 1.8\%) [8]$	1.2%	
	$ V_{cb} $ excl.	$37.5 \cdot 10^{-3} (1 \pm 3.0\%_{\text{ex.}} \pm 2.7\%_{\text{th.}})$ [10]	1.8%	1.4%
	$ V_{ub} $ incl.	$4.47 \cdot 10^{-3} (1 \pm 6.0\%_{\text{ex.}} \pm 2.5\%_{\text{th.}}) [5]$	3.4%	3.0%
	$ V_{ub} $ excl. (had. tag.)	$3.52 \cdot 10^{-3} (1 \pm 8.2\%)$ [7]	4.7%	2.4%
Missing E decays	$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	$96(1 \pm 27\%)$ [26]	10%	5%
	$\mathcal{B}(B \to \mu \nu) \ [10^{-6}]$	$< 1.7 \ [67]$	20%	7%
	$R(B \to D \tau \nu)$	$0.440(1 \pm 16.5\%) \ [29]^{\dagger}$	5.6%	3.4%
	$R(B ightarrow D^* au u)^{\dagger}$	$0.332(1 \pm 9.0\%) \ [29]^{\dagger}$	3.2%	2.1%
	$\mathcal{B}(B \to K^{*+} \nu \overline{\nu}) \ [10^{-6}]$	< 40 [30]	< 15	30%
	$\mathcal{B}(B \to K^+ \nu \overline{\nu}) \ [10^{-6}]$	< 55 [30]	< 21	30%
Rad. & EW penguins	$\mathcal{B}(B \to X_s \gamma)$	$3.45 \cdot 10^{-4} (1 \pm 4.3\% \pm 11.6\%)$	7%	6%
	$A_{CP}(B \to X_{s,d}\gamma) \ [10^{-2}]$	$2.2 \pm 4.0 \pm 0.8$ [68]	1	0.5
	$S(B\to K^0_S\pi^0\gamma)$	$-0.10 \pm 0.31 \pm 0.07$ [20]	0.11	0.035
	$S(B \to \rho \gamma)$	$-0.83 \pm 0.65 \pm 0.18$ [21]	0.23	0.07
	$C_7/C_9 \ (B \to X_s \ell \ell)$	${\sim}20\%$ [36]	10%	5%
	$\mathcal{B}(B_s \to \gamma \gamma) \ [10^{-6}]$	$< 8.7 \ [42]$	0.3	_
	$\mathcal{B}(B_s \to \tau \tau) \ [10^{-3}]$	_	$< 2 \ [44]$ ‡	_

MIAPP Workshop

	Observables	Belle	Bel	lle II
		(2014)	5 ab^{-1}	50 ab^{-1}
Charm Rare	$\mathcal{B}(D_s \to \mu \nu)$	$5.31 \cdot 10^{-3} (1 \pm 5.3\% \pm 3.8\%)$ [46]	2.9%	0.9%
	$\mathcal{B}(D_s \to \tau \nu)$	$5.70 \cdot 10^{-3} (1 \pm 3.7\% \pm 5.4\%)$ [46]	3.5%	2.3%
	$\mathcal{B}(D^0 \to \gamma \gamma) \ [10^{-6}]$	< 1.5 [49]	30%	25%
Charm CP	$A_{CP}(D^0 \to K^+ K^-) \ [10^{-2}]$	$-0.32 \pm 0.21 \pm 0.09$ [69]	0.11	0.06
	$A_{CP}(D^0 \to \pi^0 \pi^0) \ [10^{-2}]$	$-0.03 \pm 0.64 \pm 0.10$ [70]	0.29	0.09
	$A_{CP}(D^0 \to K_S^0 \pi^0) \ [10^{-2}]$	$-0.21 \pm 0.16 \pm 0.09$ [70]	0.08	0.03
Charm Mixing	$x(D^0 \to K_S^0 \pi^+ \pi^-) \ [10^{-2}]$	$0.56 \pm 0.19 \pm {}^{0.07}_{0.13}$ [52]	0.14	0.11
	$y(D^0 \to K_S^0 \pi^+ \pi^-) \ [10^{-2}]$	$0.30 \pm 0.15 \pm \frac{0.05}{0.08}$ [52]	0.08	0.05
	$ q/p (D^0\to K^0_S\pi^+\pi^-)$	$0.90 \pm {}^{0.16}_{0.15} \pm {}^{0.08}_{0.06}$ [52]	0.10	0.07
	$\phi(D^0 \to K^0_S \pi^+ \pi^-) \ [^\circ]$	$-6 \pm 11 \pm \frac{4}{5}$ [52]	6	4
Tau	$\tau \to \mu \gamma \; [10^{-9}]$	< 45 [71]	< 14.7	< 4.7
	$\tau \to e \gamma \ [10^{-9}]$	< 120 [71]	< 39	< 12
	$\tau \to \mu \mu \mu \ [10^{-9}]$	< 21.0 [72]	< 3.0	< 0.3

Summary

- CP Violation measurements are a key driver of the heavy flavour program.
- ~10% (CP-violating) amplitude of NP still open.
- Very curious anomalies in rare decays hint at charged Higgs-like, and possibly left-right symmetry.
- SuperKEKB has been brought to life first turns occurred in February. Current now almost 1 Amp! See C. Kiesling's talk.
- Rich physics programs at SuperKEKB/Belle II and LHCb upgrades.
 - 50 × integrated luminosity @ Belle II
 - New sources of CPV, New gauge bosons, Lepton Flavour Violation, Dark Sectors.
 - Numerous anomalies to probe with the first 5 ab⁻¹.
- Belle II Theory Interface Platform 2 workshops per year https://belle2.cc.kek.jp/~twiki/bin/view/B2TiP

SuperKEKB

0.40.5

Belle II at the e+e- intensity frontier: @509 MHz

KEKB to SuperKEKB

P. Urquijo, ANU Physics Seminar, Belle II Physics

SuperKEKB near Belle II collision region, Late 2015

MIAPP Workshop

Feb 2016 News: First Turns at SuperKEKB (4 GeV e+'s and 7 GeV e-'s)

May 23, 2016 (LER beam current at 790 mA, HER at 730 mA)

First new particle collider since the LHC (*intensity frontier* rather than energy frontier; e⁺ e⁻ rather than p p)

MIAPP Workshop

Phillip URQUIJO

68

Feb 2016 News: First Turns at SuperKEKB (4 GeV e+'s and 7 GeV e-'s)

May 23, 2016 (LER beam current at 790 mA, HER at 730 mA)

First new particle collider since the LHC (*intensity frontier* rather than energy frontier; e⁺ e⁻ rather than p p)

MIAPP Workshop

Phillip URQUIJO

68

Compare the Parameters for KEKB and SuperKEKB

	KEKB Design	KEKB Achieved : with crab	SuperKEKB Nano-Beam	
Energy (GeV) (LER/HER)	3.5/8.0	3.5/8.0	4.0/7.0	
β _y * (mm)	10/10	5.9/5.9	0.27/0.30	
β _x * (mm)	330/330	1200/1200	32/25	
ε _x (nm)	18/18	18/24	3.2/5.3	
ε _γ /ε _x (%)	1	0.85/0.64	0.27/0.24	
σ _y (mm)	1.9	0.94	0.048/0.062	
σ _x (cm)	0.052	0.129/0.090	0.09/0.081	
σ _z (mm)	4	6 - 7	6/5	
I _{beam} (A)	2.6/1.1	1.64/1.19	3.6/2.6	
N _{bunches}	5000	1584	2500	
Luminosity (10 ³⁴ cm ⁻² s ⁻¹)	1	2.11	80	+

Nano-beams are the key (vertical spot size is ~50nm !!) MIAPP Workshop 69

Bele II Physics

Belle II Mission

To search for new phenomena that may solve the missing antimatter puzzle

Builds on 2008 Nobel Prize success, M Kobayashi and T Maskawa "for the discovery of the origin of the broken symmetry which predicts the existence of at least three families of quarks in nature". → **Belle experiment credited**

MIAPP Workshop

The case for new physics manifesting in Belle II

Issues (addressable at a Flavour factory)

- Baryon asymmetry in cosmology
 → New sources of CPV in quarks and charged leptons
- Finite neutrino masses
 → Tau LFV.
- Quark and Lepton flavour & mass hierarchy
 → higher symmetry, massive new particles, extended gauge sector
- 19 free parameters
 → Extensions of SM relate some, (GUTs)
- + Puzzling nature of exotic "new" QCD states.

→ NP beyond the direct reach of the LHC

Belle II Detector

10.00

Belle II Detector

MIAPP Workshop

Belle II Detector

[600+ collaborators, 99 institutes, 23 nations]

MIAPP Workshop

Time-of-Propagation(TOP) Detector

Time-of-Propagation(TOP) Detector

agind Cherenkov counter Phillip URQUIJO

1st Time of Propagation Detector delivered to Tsukuba Hall, Jan 2016

MIAPP Workshop

Feb: 1st TOP bar

MIAPP Workshop

Feb: 1st TOP bar

May: fully installed!

MIAPP Workshop

Silicon Vertex Detector

SVD L3 Construction & Mechanical test with close-to-final parts

MIAPP Workshop

April 2016: 2 *full-sized* Belle II pixel modules at DESY

Test full-sized PXD modules in a beam.

Working examples of L3, L4, L5, L6 SVD ladders

Test the integrated PXD-SVD system. This includes ROI (region of interest) extrapolation from the SVD tracker to the PXD, which is needed to reduce the *large data volume*.

CDC

Phillip URQUIJO

82

CDC

Wire chamber built. Installing electronics

Moved to main experimental hall in Jan 2015

MIAPP Workshop

Trigger & dataset

- HLT output estimated to be ~11 nb = 11 kHz at nominal luminosity.
- Largest dataset in particle physics outside of LHC.

83

Belle II Schedule

MIAPP Workshop

When do we start Belle II ?

QCSL at KEK, Dec 2015

Belle II Schedule

When do we start Belle II ?

- BEAST PHASE I: Started in Feb 2016 (Belle II roll-in at the end of
- the year)
- BEAST PHASE II: Starts in Nov
- 2017 [first collisions, limited
- physics without vertex detectors]
- **Belle II Physics Running: Late**
- 2018 [vertex detectors in]

QCSL at KEK, Dec 2015

Strengths of e⁺e⁻ @ Y(4S)

Unique capabilities of Belle II:

- Exactly 2 B mesons produced (at Y(4S))
 - High flavour tagging efficiency.
 - B full-reconstruction tagging with precise initial interaction kinematics.
- Detection of photons, π^0 , ρ^{\pm} , $\eta^{(')}$, K_L
- Clean ("see" decays with several neutrinos).

PID & Tracking will be MUCH better

and $\langle N(track) \rangle \sim 10$ per event

Phillip URQUIJO

85

"Missing Energy Decay" in a Belle II GEANT4 MC simulation

Signal $B \rightarrow K \nu \nu$ tag mode: $B \rightarrow D\pi$; $D \rightarrow K\pi$

Zoomed view of the vertex region in r--phi

View in r-z

CKMfitter

The CKMfitter group

• More results on <u>http://ckmfitter.in2p3.fr</u>

fitter	- C	ĸ	N 1	Атт.	Е В	
	CKMfitte	r global f	it resu	ults as of Mor	riond14:	
& Results fic Studies	Wolfers UT and	tein paramete les and sides	•			
& Writeups cations	Other elements Input parameters					
	• Rave de	oay branching	ning als		and include and and the	
	For a more ex	sensive discus	eron, pre	and read the summa	ey or inputs and results.	
a a sua di candina finde	rectangen parameters and Janakog evanant					
	-	Central I		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1000	
	-	0.32561 (-0.000	68	0.22561 (-0.50080 -0.00080	0.2010 (+0.0010 0.2010 (+0.0010	
	phar	0.1489 (+0.0158	-0.0064	0.149 (-0.000 -0.016)	0.149(+0.043-0.024)	
	rpar	0.342 (+0.013 -0	(110.	0.342 (-0.024 -0.024)	[3.342 (+0.006 -0.036)	
	5140.2	2 97 (+0.18-0.2	9	2.87 (+0.30-0.26)	2.97 [+0.41-0.30]	
	Generation	0				
		1 4 4 4 4	<u> </u>		-	
	sin 2a	0.058 +0.055 0.055	-0.058 (+	0.089-0.192]	0.06(+0.14.0.26)	
	un 2o un 2o (mass. rot in the R)	0.056 0.010 0.010 0.12 (-0.10 0.17	4 098 (+	0.089-0.190] .15-0.17]	0.06 (+0.14 -0.26) -0.12 (+0.19 -0.22)	
	an 2a an 2a (maas, rot in the fit) an 29	0.058 [+0.066 (080] [-0.12][+0.10 (010] [0.682][+0.020 (018]	-0.008 (+ -0.12 (+0	0.089 (0.192) 15 (0.17) 109 (0.08)	4.06 (+0.14 (0.26) 4.12 (+0.19 -0.22) 0.692 (+0.057 -0.051)	
	un 2a un 2a (meas, not in the ft) ein 28 un 28 (meas, not in the ft)	0.058 0.000 0.000 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010	-0.098 (+ -0.12 (+0 0.692 (+0 0.774 (+0	8.099-0.192] 15-0.17] 1829-8.036] 1834-8.090]	4.06 (+0.14 & 0.26) 4.12 (+0.19 +0.22) 0.692 (+0.167 +0.051) 0.774 (+0.150 -0.136)	
	sin 2a sin 2a (mean not in the ft) sin 26 sin 26 (mean not in the ft) a (seg)	6.008 (-0.066 0.092] 0.12]-0.10 0.17]-0.10 0.018 0.774 (-0.047 0.018 0.774 (-0.047 0.018 0.774 (-0.047 0.006 0.174 (-0.047 0.006 0.174 (-0.047 0.006 0.174 (-0.047 0.006 0.174 (-0.047 0.006 0.174 (-0.046 0.000 0.174 (-0.046 0.000 0.174 (-0.046 0.000 0.174 (-0.046 0.000 0.174 (-0.046 0.000 0.174 (-0.046 0.000 0.174 (-0.046 0.000 0.174 (-0.046 0.174 (-0.046 0.174 (-0.046 0.174 (-0.046 0.174 (-0.046 0.174 (-0.046 0.174 (-0.046 0.174 (-0.046 0.174 (-0.046 0.174 (-0.046) 0.174 (-0.047 0.174 (-0.047 0.174 (-0.047) 0.174 (-0.047)	4 098 (* 4 12 (+0 0 692 (+1 0 774 (+1) 91 7 (+5	0.099-0.192] 15-0.17] 109-0.096] 1094-0.096] 5-096]	0.08 (+0.14 0.28) 0.12 (+0.19 -0.22) 0.092 (+0.157 -0.051) 0.774 (+0.000 -0.138) 91.7 (+7.3 -0.1)	
	sin 2a sin 2a (mass. not in the ft) sin 28 sin 26 (mass. not in the ft) a (seg) a (seg) a (seg) (mass. not in the ft)	-0.058 -0.065 (-0.002] (-0.002] (-0.002] (-0.003] (-0.004) (-0.004] (-0.004] (-0.004] (-0.004) (-0.004) (-0.004) (-0.004) (-0.005) (-0.0	4.098 (+ 4.12 (+0 0.692 (+0 0.774 (+0 91.7 (+5) 93.8 (+4)	0.089-0.192] .15-0.17] .109-0.036] .109-0.	4.08 (+0.14 -0.28) 0.12 (+0.19 -0.22) 0.090 (+0.107 -0.051) 0.774 (+0.090 -0.139) 91.7 (+7.3 -4.1) 10.0 (+6.4 -0.8)	
	an 2a an 2o (maas rot in the ft) an 20 an 20 an 20 (maas rot in the ft) o (deg) (maas rot in the ft) o (deg) (d) maas) o (deg) (d)	0.008 +0.066 0.092 0.12 -0.10 0.11 0.482 -0.020 0.018 0.754 -0.017 0.098 0.754 -0.017 0.098 0.754 -0.027 0.098 0.17 -0.017 0.098 0.17 -0.017 0.008 0.17 -0.017 0.008 0.17 -0.017 0.008 0.17 -0.017 0.008 0.17 -0.017 0.008 0.17 -0.020 0.018 0.018 0.018 0.018 0.018 0.028	4.098 (+ 4.12 (+0 0.092 (+0 0.774 (+4) 91.8 (+4) 85.4 (+4) 85.4 (+1)	0.009-0.192] 15-0.17 0.09-0.096] 0.09-0.096] 5-2.8] 8-4.2] 8-4.2] 8-4.2] 8-4.2] 8-4.3]	4.08 (+0.14 0.28) 4.12 (+0.19 -0.22) 0.692 (+0.67 -0.051) 0.774 (+0.050 -0.138) 91.7 (+7.3 -4.1) 91.6 (+44 -6.6) 86 (+17 -12) (0.1+63 -15) 86 (+17 -12) (0.1+63 -15)	
	un 20 sin 20 (miss. rol in the R) sin 20 (miss. rol in the R) o (sing) (miss. rol in the R)	0.008 +0.066 0.002 0.10] 0.11 0.11 0.11 0.11 0.156 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.000 0.016 0.017 0.000 0.016 0.017 0.000 0.016 0.017 0.000 0.016 0.017 0.000 0.016 0.017 0.000 0.016 0.017 0.000 0.016 0.010 0.010 0.010 0.010 0.010 0.010 0.000 0.010 0.000 0.010 0.0000 0.0000 0.00000 0.0000000 0.0000 0.0000 0.000000 0.00000 0.000000 0.	4.098 (* 4.12 (*) 0.692 (*) 0.774 (*) 91.7 (*) 93.8 (*) 93.8 (*) 93.8 (*) 93.8 (*) 93.8 (*) 93.8 (*) 93.8 (*) 93.8 (*)	0.000-0.102] 15-0.17] 1000-0.006] 1000-0.006] 1-2.8] 1-4.3] 1-4.3] 1-4.3] 1-4.3] 1-4.3] 1-5.8] 1-4.4]	4.08 (+0.14 0.28) 0.12 (+0.19 - 0.22) 0.692 (+0.167 - 0.651) 0.774 (+0.167 - 0.651) 97.74 (+0.167 - 0.61) 98.7 (+7.3 - 0.1) 98.6 (+8.4 - 0.6) 98.6 (+8.4 - 0.6) 98.6 (+8.4 - 0.6) 98.7 (+0.14 - 0.28) 98.7 (+0.14 - 0.14) 98.7 (+0.14 - 0.14) 99.7 (+0.14 - 0.14) 90.7 (+0.14) 90.7	
	un 20 un 20 (mass. not in the 8) un 20 (mass. not in the 8) o (seg) (mass. not in the 8) o (seg) (do. mass.) Ø (seg) (do. mass.) Ø (seg) (mass. not in the 8) Ø (seg) (mass. not in the 8)	0.006 1+0.066 0.002 0.002 0.012 +0.10 0.01 0.026 0.016 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.002 0.006 0.002 0.006 0.002 0.006 0.002 0.006 0.002 0.006 0.002 0.006 0.002 0.002 0.006 0.002 0.002 0.006 0.002 0.006 0.	4.098 (+ 4.12 (+0 0.092 (+0 0.774 (+0 91.5 (+4) 93.6 (+4) 93.6 (+4) 93.6 (+1) 21.9 (+1) 21.4 (+1)	0.000-0.100] 15-0.17] 0.09-0.000] 0.09-0.090] 0.09-0.090] 0.09-0.090] 0.09-0.090] 0.09-0.090] 0.090	4 06 (+0.14 0.28) 4 12 (+0.16 - 0.22) 0 692 (+0.157 - 0.051) 0.774 (+0.150 - 0.139) 91.7 (+7.3 - 4.1) 93.8 (+6.4 - 6.8) 86 (+7.7 - 52) (-0.145 - 15) 159 9 (+3.4 - 15.2) 21.9 (+2.4 - 6.7) 25.4 (+2.4 - 6.7)	
	sin 29 sin 29 (mass) not in the 80 sin 28 (mass) not in the 80 o (deg) (mass) not in the 80 o (deg) (mass) not in the 80 o (deg) (de) notes) g (de) g	0.006 0.006 0.007 0.013-0.10 0.01 0.014	4 018 (+ 0 12 (+0 0.692 (+0 0.774 (+0 0.774 (+0 0.5 (+1 0.5 (+1) 21.5 (+1) 21.5 (+1)	0.000-0.100] 15-0.17] 0.09-0.006] 0.09-0.090] 0.09-0.090] 0.28] 0-2.8] 0-4.2] 0-1.4] 0-1.4] 0-0.8] 0-1.8]	4 06 (+0.14 0.26) 4 12 (+0.19 -0.22) 0.692 (+0.057 -0.051) 0.774 (+0.057 -0.051) 91.7 (+7.3 -4.1) 93.6 (+6.4 -6.6) 159.9 (+742) (-0.1+6-15) 159.9 (+7.42) (-0.1+6-15) 159.9 (
	sn 29 sn 29 (mass, not in the 8) sn 29 (mass, not in the 8) a (deg) (mass, not in the 8) a (deg) (mass, not in the 8) b (deg) (deg) (mass, not in the 8) b (deg)	0.006 0.000 0.000 0.007 0.001 0.001 0.001 0.001 0.000 0.001 0.0000 0.00000 0.00000 0.0000 0.0000	4 008 (+ 0 12 (+0 0.002 (+0 0.774 (+6) 0.774 (+6) 0.81.8 (+4) 0.61.4 (+1) 21.8 (+1) 21.8 (+1) 21.8 (+1) 06.5 (+2)	2.009-0.100] 15-0.17] 209-0.006] 104-0.090] 5-2.8] 8-4.2] 1-4.38[5-2.8] 5-1.4] 5-1.8] 5-1.8]	4.06 (+0.14 0.28) 4.12 (+0.19 -0.22) 0.692 (+0.167 -0.061) 0.774 (+0.000 -0.138) 91.7 (+7.3 -4.1) 92.6 (+46.6) 66 (+762) (0.1+615) 27.9 (+2.4 -6.7) 27.6 (+2.3 -2.2) 86.6 (+3.4 -6.4)	
	sn 29 sn 20 (mass, not in the 8) sn 28 (mass, het in the 8) o (deg) (mass, not in the 8) o (deg) (mass, not in the 8) b (deg) (mass, not in the 8)	0.006 0.006 0.007 0.019-0.000 0.019-0.000 0.0019	4.008 (+ 4.12 (+0 0.002 (+4 0.774 (+6) 0.774 (+6) 0.774 (+6) 0.774 (+6) 0.774 (+1) 21.8 (+1) 21.8 (+1) 0.8 5 (+2) 0.8 4 (+2)	2.009-0.100] 15-0.17] 209-2.036] 204-2.090] 5-2.8] 8-4.2] 2-4.3] 5-2.8] 5-3.8] 5-3.8] 5-3.8] 5-3.8] 5-3.8] 5-3.8]	4 06 (+0.14 0.28) 4 12 (+0.19 -0.22) 0.692 (+0.167 -0.061) 0.774 (+0.167 -0.061) 91.7 (+7.3 -4.1) 92.6 (+6.4 -6.6) 1199 (+7.42) (-0.1+5-15) 1199 (+7.42) (-0.1+5-15) 1199 (+7.42) (-0.1+5-15) 119 (+2.4 -6.7) 21.6 (+2.3 -2.2) 95.5 (+2.4 -6.6) 95.4 (+3.4 -6.6)	

Jérôme Charles	Theory	CPT Marseille (FR)
Olivier Deschamps	LHCb	LPC Clermont-Ferrand (FR)
Sébastien Descotes-Genon	Theory	LPT Orsay (FR)
Ryosuke Itoh	Belle/Belle II	KEK Tsukuba (JP)
Heiko Lacker	ATLAS/BABAR	Humboldt-Universität Berlin (DE)
Evan Machefer	LHCb	LPC Clermont-Ferrand (FR)
Andreas Menzel	ATLAS	Humboldt-Universität Berlin (DE)
Stéphane Monteil	LHCb	LPC Clermont-Ferrand (FR)
Valentin Niess	LHCb	LPC Clermont-Ferrand (FR)
José Ocariz	ATLAS/BABAR	LPNHE Paris (FR)
Jean Orloff	Theory	LPC Clermont-Ferrand (FR)
Alejandro Perez	BABAR	IPHC Strasbourg (FR)
Wenbin Qian	LHCb	LAPP Annecy-Le-Vieux (FR)
Vincent Tisserand	LHCb/BABAR	LAPP Annecy-Le-Vieux (FR)
Karim Trabelsi	Belle/Belle II	KEK Tsukuba (JP)
PU	Belle/Belle II	U. of Melbourne (AU)
Luiz Vale Silva	Theory	LPT Orsay (FR)

CKMfitter Methodology

• Global fit to CKM parameters $q = (A,\lambda,\rho,\eta)$...) Rfit **ERfit** • Use Frequentist approach to huild (nginalized) functions Gauss \otimes flat \dots Gauss \otimes Gauss In the case of Gaussi inties exp^Lsyst $-\mathcal{O}_{exp}$ $\mathcal{L}(q) = \prod \mathcal{L}_{\mathcal{O}}(q)$ $\chi^2(q)$ Estimator q[^] maximu • $\chi^{2}(q^{2}) = \min_{q} \chi^{2}_{1}$ • Confidence level for a given q_0 obtained from $\Delta \chi^2(q_0) = \chi^2$ 2 6 -6 -2 0 4 -4 $X_{exp} - X_{theo}$ Dedicated RFit scheme for the treatment of theoretical s¹ $x = \mu + \sigma N[0,1] + \Delta_x$ systematics are considered as additional nuisance parame Observation Gaussian **Systematic** stat. error bounded in $[-\Delta; \Delta]$ **Parameter**

Unitarity Triangle

P. Urquijo, ANU Physics Seminar, Belle II Physics