
Study of Sudden Beam Losses of
SuperKEKB and Development of 3D

Track Hardware Trigger using
Machine Learning at Belle II

LIU Yuxin

Master of Science (M.Sc.)

Department of Particle and Nuclear Physics

School of High Energy Accelerator Science

The Graduate University for Advanced Studies, SOKENDAI

September 2023



ii

Acknowledgments

I would like to express my deepest gratitude and appreciation to the following
individuals and institutions who have played a significant role in the completion of my
master’s thesis.

First and foremost, I am incredibly grateful to my supervisors, Taichiro Koga-san
and Akimasa Ishikawa-san, for their unwavering support, invaluable guidance, and
scholarly expertise throughout this research journey. Their insightful feedback,
patience, and mentorship have been instrumental in shaping the direction of this thesis.
I am truly fortunate to have had the opportunity to work under their supervision.

I am indebted to SOKENDAI, for providing me with the necessary resources and a
stimulating academic environment. The excellent faculty and staff at SOKENDAI have
been instrumental in my growth as a researcher.

I am grateful to my colleagues in KEK, who provided valuable insights, engaging
discussions, and a supportive community throughout of my two years study and
research process. Their camaraderie and intellectual contributions have enriched my
research and learning experience.

Finally, I would like to express my heartfelt thanks to my friends and family for
their unconditional love, encouragement, and understanding. Their unwavering
support and belief in my abilities have been a constant source of motivation, especially
during challenging times.

In conclusion, the successful completion of this thesis would not have been
possible without the support and contributions of the aforementioned individuals and
institutions. I am truly grateful for their involvement and trust in my capabilities.

Yuxin Liu



iii

Abstract

The Belle II Experiment, located at the SuperKEKB asymmetric electron-positron
collider in Japan, is at the next generation of B-factories, aiming to explore new
physics (NP) in the flavor sector and enhance the precision of Standard Model (SM)
measurements. SuperKEKB is expected to achieve the luminosity of 6 × 1035, cm−2s−1 ,
enabling unprecedented NP searches and measurements of the CKM matrix. However,
the increase of higher luminosity faces challenges of sudden beam loss events and
increasing level-1 trigger rates.

Sudden beam loss events, characterized by rapid beam loss within a few turns, pose
risks to the SuperKEKB and Belle II components, with the underlying causes still
unknown. To address this, beam loss monitor with fine timing resolution have been
installed to pinpoint the location of initial beam loss. Timing analyses have identified
the LER D06 section as the region where the earliest loss occurs, suggesting the
occurrence of initial beam instability. Based on the analysis results, countermeasures,
such as fast beam abort and additional sensors at the D06 section, are planned to
protect detectors and collimators from sudden beam loss.

The 3D Track Hardware Trigger, responsible for triggering physics events, faces
limitations of trigger rate. With increasing luminosity, the large increased background
trigger rate nears the maximum limit. Based on the newly deployed fourth generation
universal trigger board (UT4, which have general 4 times logic gates than previous
board, new neural-network 3D track trigger architectures have been developed with
software simulations. These architectures achieved an 50 % reeducation of total CDC
trigger background. Further work will focus on simplifying the architecture and
implementing it in UT4 modules.
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1

Introduction

The Belle II Experiment, located at the SuperKEKB asymmetric electron-positron
collider in KEK, Japan, is the next generation B-factory. Its primary physics goals
are to explore new physics (NP) in the flavor sector at the intensity frontier and
enhance the precision of measurements for Standard Model (SM) parameters. The
SuperKEKB facility is specifically designed to collide electrons and positrons at
center-of-mass energies near the Υ resonances. Most of the data will be collected at
the Υ(4𝑆) resonance, which is just above the threshold for B-meson pair production,
thereby avoiding the production of fragmentation particles. To enable measurements
of time-dependent charge-parity (CP) symmetry violation, the accelerator is designed
with asymmetric beam energies to boost the center-of-mass system.

Building upon the achievements of its predecessor, the Belle experiment, the Belle
II detector has undergone upgrades, including the addition of a new Pixel Detector
(PXD) employing DEPFET technology and a larger Central Drift Chamber (CDC).
The KEKB facility has been upgraded to SuperKEKB to achieve a peak luminosity of
6 × 1035, cm−2s−1 and aims to accumulate a integrated luminosity of 50 ab−1. As of June
2022, SuperKEKB has already achieved a luminosity of 4.7 × 1034, cm−2s−1.

During recent operations of the SuperKEKB, there has been a noticeable increase
in the occurrence of "sudden beam loss" (SBL) events. These SBL events result
in a rapid loss of the stored beam within just a few turns, and the exact reasons
behind them remain unknown. Notably, the occurrence of large SBL events has also
caused significant damage to the vertical collimators, posing challenges in effectively
controlling the beam background. In some cases, these events have even led to
substantial radiation doses in the vicinity of the interaction point (IP), posing a serious
risk of damaging the sensors of the Belle II detector. Consequently, there is an urgent
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need to investigate the underlying causes of these sudden beam loss events. To identify
the precise location in the accelerator ring where the earliest beam loss is observed, we
have installed fast loss sensors and are conducting timing analyses that involve fast
loss monitors and other beam monitors.

Despite that, as the luminosity increases, each sub-detector of Belle II faces a
limitation of a finite bandwidth for data transfer. Therefore, in order to manage this, a
Level-1 trigger is employed to select interesting events for recording with a maximum
limit for the Level-1 trigger rate, set at 30 kHz. And it is worth noting that this rate
has already reached approximately 11 kHz at a luminosity of 4.7 × 1034, cm−2, s−1.
To facilitate future data acquisition, it is imperative to update the Level-1 trigger to
effectively reduce the background trigger rate. Through our investigations, we have
identified the CDC trigger with tracks off the IP as the primary source of background
triggers. Thus, our plan entails augmenting the input information and upgrading
the existing Neural-Network 3D track trigger architectures by incorporating the
advancements provided by the universal trigger board 4 hardware upgrade.

This thesis is organized as follows. Chapter 1 of this thesis will delve into the
physics motivations driving the Belle II experiment. In Chapter 2, an extensive overview
of the SuperKEKB collider and the Belle II detector will be presented. The significance
of SBLs and the fast loss monitor system will be outlined in Chapter 3, while Chapter 4
will illustrate the methodology employed for timing analysis using fast loss monitors.
The preliminary findings and analysis of SBLs will be shown in Chapter 5. Furthermore,
Chapter 6 will elucidate the current pipeline of the level-1 CDC trigger, followed by
Chapter 7 which explores several optimized approaches for the level-1 CDC trigger.
Finally, Chapter 8 will show the performance evaluation of each proposed method.
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1
Physics motivation of Belle II

The chapter will give an overview of the physics motivations for the Belle II.

1.1 Measurements of Standard Model parameters

At its current level of experimental precision and with the energies achieved thus far,
the Standard Model (SM) stands as the most extensively tested theory of elementary
particle physics. The Belle II experiment aims to contribute to this endeavor by
precisely measuring the parameters of the SM, particularly focusing on the elements of
the CKM matrix.

1.1.1 CKMmatrix

The Cabibbo-Kobayashi-Maskawa (CKM) matrix [1, 2] is a unitary matrix that describes
the mixing of quark flavors in weak interactions and appears in the couplings of the W
boson to quarks:
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In this equation, 𝑔 represents the gauge coupling constant, 𝑢𝐿𝑗 and 𝑑𝐿𝑘 are left-
handed up-type and down-type quark fields, respectively,𝑊 +
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gauge bosons of the weak force, and 𝑉𝑗𝑘 represents the elements of the CKM matrix.

It relates the mass eigenstates of quarks (𝑑′, 𝑠′, 𝑏′) to their weak interaction
eigenstates (𝑑 , 𝑠 , 𝑏). as:
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where 𝑉𝑖 𝑗 represents the CKM matrix elements corresponding to the transition

from the 𝑖th-type quark to the 𝑗th-type quark.

A arbitrary 3 × 3 complex matrix have 18 free parameters. Considering the
unitary condition 𝑉𝐶𝐾𝑀𝑉 †

𝐶𝐾𝑀
= 1, we can reduce the free parameter by 9, and 5 phase

parameter can be absorbed in the quark field redefinition, thus the CKM matrix
can be characterized with four parameters: three Euler angles (𝜃12, 𝜃23, 𝜃13) and one
complex phase (𝛿). The angles represent the mixing between different generations of
quarks, while the phase accounts for CP violation. The mixing angles determine the
probabilities of flavor-changing transitions in weak interactions.

The CKM matrix can be parameterized as follows:
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where 𝑠𝑖 𝑗 = sin𝜃𝑖 𝑗 and 𝑐𝑖 𝑗 = cos𝜃𝑖 𝑗 .

Another common parametrization is the Wolfenstein Parametrization, which
expands the CKM matrix in terms of the parameter 𝜆 = sin𝜃12 ∼ 0.22 . Wolfenstein
then defined four parameters (𝜆,𝐴, 𝜌, 𝜂):

𝜆 = 𝑠𝑖𝑛𝜃12; 𝐴𝜆2 = 𝑠𝑖𝑛𝜃23; 𝐴𝜆3(𝜌 − 𝑖𝜂) = 𝑠𝑖𝑛𝜃12𝑒
−𝑖𝛿 (1.1)
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so that up to O(𝜆3), the CKM matrix can be written as:
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We can also expand the unitary condition 𝑉𝐶𝐾𝑀𝑉 †
𝐶𝐾𝑀

= 1 to O(𝜆3). If we take a
product of the down and bottom columns:
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which contains three complex terms of O(λ3) that must form a closed triangle in
the complex plane, as shown in Fig. 1.1. It is convenient to normalize these terms so
that one side is purely real with length 1.
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Figure 1.1: The CKM unitary triangle[3]

We can define three angles of the unitary triangle:
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)
The accurate measurement of these three angles can test the consistency of the



6 Chapter 1. Physics motivation of Belle II

CKM matrix and search for possible deviations that could indicate the presence of new
physics beyond the Standard Model.

The angle 𝜙1 is measured from the interference between 𝐵𝑑 oscillation with 𝑏 → 𝑐𝑠𝑠

decays. Most of the hadronic uncertainties cancel out in this CP-violating observable,
and it therefore provides a very clean and precise determination of 𝜙1 already with
Belle, BaBar and LHcb.

The angle 𝜙2 is measured from interference between the tree level 𝑏 → 𝑢𝑑𝑢 and
the B meson mixing, with decays such as 𝐵 → 𝜋𝜋, 𝜋𝜌, 𝜌𝜌 . The penguin contribution
pollutes this 𝜙2 measurement. The experimental error on 𝜙2 is still very large, and
more precise measurements by Belle II have the potential to reveal a deviation from the
other unitary triangle fit inputs.

The third angle 𝜙3 is measured via the CP asymmetry, which occurs due to the
interference between 𝑏 → 𝑐𝑢𝑠 and 𝑏 → 𝑢𝑐𝑠 , and both decay to the same final state.
The Decay mode of the type 𝐵 → 𝐷 (∗)𝐾 (∗) , where the 𝐷 meson decays to a flavor
non-specific hadronic decays, can be used to obtain a very precise determination of 𝜙3.
The measurement of 𝜙3 is highly statistics-limited and will be greatly improved in the
era of Belle II.

1.2 New physics searching in flavor sector

Another target of Belle II experiments is to search for NP beyond SM that includes more
specific flavor couplings, for which indirect searches can push the new physics scale
much higher. Many flavor physics questions may be addressed by Belle II experiments.
Here we list some examples from [3].

• New CP violating phases in the quark sector and flavour-changing neutral
currents (FCNC) beyond the SM: The amount of CP violation in the SM quark
sector is orders of magnitude too small to explain the baryon-antibaryon
asymmetry. Measurements of time-dependent CP violation in penguin transitions
of 𝑏 → 𝑠 and 𝑏 → 𝑑 quarks, such as 𝐵 → 𝜙𝐾0 and 𝐵 → 𝜂0𝐾0 decay at Belle
II, may provide new insights. Additionally, Belle II can improve the FCNC
measurements of 𝑏 → 𝑑 , 𝑏 → 𝑠 , and 𝑐 → 𝑢 transitions, shedding light on the
presence of new physics.
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• New CP violating phases in the quark sector: The amount of CP violation in
the SM quark sector is orders of magnitude too small to explain the baryon-
antibaryon asymmetry. Measurements of time-dependent CP violation in penguin
transitions of 𝑏 → 𝑠 and 𝑏 → 𝑑 quarks, such as 𝐵 → 𝜙𝐾0 and 𝐵 → 𝜂0𝐾0 decay
at Belle II may provide new insights.

• Extended Higgs sectors: Many extensions to the SM, such as two-Higgs doublet
models, predict charged Higgs bosons in addition to a neutral SM-like Higgs.
It can be searched in flavor transitions to 𝜏 leptons 𝐵 → 𝜏𝜈 and 𝑏 → 𝑠𝛾 . The
extended Higgs sector can also introduce additional sources of CP violation in
the 𝐵 → 𝑋𝑠𝛾 process.

• lepton flavor violation (LFV) : LFV in charged lepton decay at such rates are key
predictions in many neutrino mass generation mechanisms and other models of
physics beyond the SM. Belle II are expected to achieve unrivalled sensitivities of
𝜏 decays and can analysis the LFV.
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2
SuperKEKB and Belle II experiments

This chapter presents an overview of SuperKEKB and the sub-detectors of Belle II. We
focus on the beam monitors, Central Drift Chamber and level-1 trigger system.

2.1 SuperKEKB

SuperKEKB is an asymmetric-energy electron-positron double-ring collider, which
consists of a 7 GeV electron ring (high energy ring, HER), 4 GeV positron ring (low
energy ring, LER), and an injector linear accelerator (linac) with a 1.1-GeV positron
damping ring (DR), as shown in Fig. 2.1.

SuperKEKB is designed to reach peak luminosity of 6 × 1035, cm−2s−1 which is up
to 30 times higher than its predecessor KEKB and aims to collect 50 ab−1 of data as
showed in Fig. 2.2. The luminosity 𝐿 is given as:

𝐿 =
𝛾±

2𝑒𝑟𝑒
(1 +

𝜎∗𝑦

𝜎∗𝑥
) (
𝐼±𝜖𝑦±

𝛽∗𝑦
) ( 𝑅𝐿
𝑅𝜖𝑦

) (2.1)
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Figure 2.1: Schematic view of SuperKEKB[4].

where 𝛾± are the Lorentz factor, 𝑒 is the elementary charge, 𝑟𝑒 is the classical electron
radius, 𝜎∗𝑥,𝑦 are the beam sizes at the IP, 𝐼± are the beam current, 𝛽∗𝑦 is the vertical
𝛽 function at IP, 𝜖𝑦± are vertical beam-beam tune-shift parameters and 𝑅𝐿, 𝑅𝜖𝑦 are
correction factors for the geometrical loss due to the hourglass effect and the crossing
angle at the IP. To achieve higher luminosity, higher beam currents, larger vertical
beam-beam tune-shift parameters, and smaller vertical 𝛽 functions and beam size
are required at IP. In practical, SuperKEKB pursed much smaller 𝛽∗𝑦 to increasing
luminosity with the nanobeam collision scheme [6]. In the nanobeam collision scheme,
beam bunches with sufficiently small𝜎∗𝑥 collide at a large horizontal crossing angle, as
shown in Fig. 2.3. Table. 2.1 show the main Machine parameters proposed at target
luminosity for SuperKEKB comparing with KEKB.

2.1.1 Final-focus superconducting magnet system

Final-focus superconducting magnet (QCS) system [7] is a very precise and complex
system for realizing extremely small 𝛽∗𝑦 , consists of eight main super conducting
quadrupole magnets for focusing or defocusing beams, 43 super conducting corrector
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Figure 2.2: Luminosity plan of SuperKEKB [5].

2θx

Figure 2.3: Schematic view of the nanobeam collision scheme. A large Piwinski
angle(𝜙Piw = 𝜃𝑥𝜎𝑧/𝜎∗𝑥 , where 𝜃𝑥 is the half of horizontal cross angle) was adapted to
reduce 𝛽∗𝑦 . [4]
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SuperKEKB KEKB
LER HER LER HER

Beam energy(GeV) 4.0 7.0 3.5 8.0
𝛽∗𝑥/𝛽∗𝑦 (mm) 32/0.27 25/0.30 1200/5.7 1200/5.9
𝜎𝑥 (µm) 10.1 10.7 147 170
𝜎𝑦(nm) 48 62 940 940

Beam current (A) 3.6 2.6 1.64 1.19
Number of bunches 2500 1584

Number of 𝑒−/𝑒+ in bunch(1010) 9.04 6.53 6.47 4.72
Luminosity (cm−2 s−1) 6 × 1035 2.108 × 1034

Table 2.1: Main Machine Parameters of KEKB and SuperKEKB (Designed)

magnets for tuning beams canceling the leak field from the main quadrupole magnets,
and four compensation solenoid coils for canceling the detector solenoid field, as
shown in Fig. 2.4. All magnets are installed in liquid helium vessels and accommodated
in cryostats.

The superconduction magnets in QCS had quench events, which is a sudden
transition to the normal state of the superconductor in the magnet, mainly induced by
beam. In recent times, a large sudden beam loss at IP can also lead to QSC quench.
After the QCS quench, it takes more than a few hours to resume the beam operation
and re-optimize of beam optics. Thus, it is crucial to reduce the QCS quenches.

2.1.2 Collimators

The collimator [8] is one of the vacuum components used to shield the non-Gaussian
tail in bunches by bringing heavy metal blocks in proximity to the circulating beam.
They also function as machine protection systems by limiting physical apertures
locally in the rings, and also prevent quenches in the QCS. Currently, two type of
collimators are used, KEKB type which tapered chamber itself approaching the beam
and SuperKEKB type which is a chamber has two movable jaws to approach the beam
as Fig. 2.5. The SuperKEKB collimator is operated with a distance of 0.4 to 25 mm
between the center of the beam channel and the tip of the jaw (that is, half aperture) for
the vertical collimators and 2 to 30 mm for the horizontal collimators. In high-current
operations, the jaws were occasionally damaged by hitting abnormal beams, and beam
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Figure 2.4: Schematic view of the QCS [7]. QCS consist of eight super conducting
quadrupole magnets (QC1RP,QC1LP,QC2RP,QC2LP,QC1RE,QC1LE,QC2RE,QC2LE),
43 super conducting corrector magnets and four compensation solenoid coils
(ESL,ESR1,2,3)

loss can also lead to its damage.The location of all collimators on SuperKEKB showed
in Fig. 2.6.

2.1.3 Beam monitors

Beam monitors play an important role in SuperKEKB operations, which can measure
of beam characteristics and stabilize of beam. Beam monitors can provide beam
information including beam position, beam current, synchrotron radiation, beam loss
etc. Here we focus on the monitors related to beam losses.

PIN photo-diodes

PIN photo-diodes (PDs) are semiconductor with high speed and high radiant sensitivity.
Model BPW34[9] PDs are used as beam loss monitors at SuperKEKB [10] to protect
hardware of SuperKEKB against beam loss and trigger beam abort. PDs are installed at
downstream of all collimators and part of upstream to protect the collimators. Fig .5.3
(a) show the concept diagram of the PDs, it consists of P-region, N-region and intrinsic
region in between. When the Beam losses occurred, electrons/positrons within a
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Figure 2.5: Structure of SuperKEKB type (a)horizontal collimator and (b) vertical
collimator[8].

Figure 2.6: Location of all collimators at SuperKEKB[8]
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beam collide with the inner walls of the beam chamber/collimators and create large
electromagnetic showers. When a particle from such showers of sufficient energy
enters the depletion region - intrinsic region or N-region, an electron - hole pair is
generated and swept out by the reverse-bias field, creating current finally. Fig .5.3 (b) is
the circuits applied followed the PDs, an integral circuit and amplifier are applied to
readout signal. This integral circuit cause a delay for the signal readout and trigger
abort. Special PDs directly pass raw signal to oscilloscope are installed at upstream and
downstream of D06V1 and D06V2 collimators for sudden beam loss detection.

n

p
i ehole

particle
PIN

(a) (b)

Figure 2.7: (a) Concept diagram of the PDs, which consist of P-region, N-region and
intrinsic region in between. (b) Readout circuit for PDs [11]

Fiber detectors

Optical fiber sensors are also used as beam loss monitors in SuperKEKB. The schematic
diagram of optical fiber sensors are demonstrated as Fig. 2.8. Once a charged high-speed
particle passes through the optical fiber, it generates the Cherenkov light inside the
optical fiber. And the Cherenkov light transport through the fiber can be detected with
the PMT attached to the fiber. One optical fiber sensor was installed at downstream of
D06V2 collimator as beam loss monitor. A 6-bundle multimode optical fiber with
a diameter of 62.5 µm was laid from the D6 power supply building to the D06V2
collimator. Its length is 180 m, and from there it is connected to a single-mode optical
fiber of 30 m and extended upstream and downstream of the collimator. The fibers are
input to the PMT module and converted to electrical signals. Electrical signals are
transported for abort trigger and waveform recorder.
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P.M.T.

Cherenkov light

optical fiber
charged particle

optical fiber

Figure 2.8: Schematic diagram of optical fiber sensors. Once a charged high-speed
particle passes through the optical fiber, it generates the Cherenkov light inside the
optical fiber. And the Cherenkov light transport through the fiber can be detected with
the PMT attached to the fiber.

Bunch current monitor and beam oscillation recorder

The bunch current monitor (BCM) and the beam oscillation recorder (BOR) of the
bunch-by-bunch (BxB) feedback system [12] measures charge and horizontal/vertical
position of each bunch for each turn. The beam abort triggers BCM and BOR to record
4096 turns of data for all 5120 RF buckets with a sample rate as 2 ns. Once the beam
loss occurs, the certain bunch current should be decrease comparing with previous
turn, which can be measured by BCM. The BCM can indicate a certain bunch in turn
has a beam loss. However, since only one BCM is installed in each ring, it is not
possible to obtain information on where in the ring beam loss occurred. Besides, BOR
provide the beam position information, which can infer the beam instability and used
to analysis beam loss reason.

Diamond sensor

Diamond sensors [13], as solid-state ionization chambers, measure the current of
electrons and holes produced by particles due to beam loss. Diamond sensors installed
at the beam pipe, SVD detectors and QCS (Fig. 2.9) measure the radiation level inside
the Belle II detector. If the measured radiation level is higher than 4 mrad in 10 µs or
higher than 40 mrad in 1 ms, a beam abort request signal is issued and delivered to
SuperKEKB abort system. Diamond sensors have a sample rate of 50 MHz and record
ADC by integral 125 samples, which corresponding to 2.5 µs for each recorded ADC
value.
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Figure 2.9: Photographs of diamond sensors (red dashed boxes) mounted on the beam
pipe (top), on the backward SVD support cone (bottom left), and on the bellows close
to the backward QCS (bottom right) [13]

2.1.4 Beam Abort system

In order to protect the hardware components of the detector and the accelerator against
the high beam currents, beam abort system [14] was installed at SuperKEKB. Beam
abort system consist of kicker magnets, pulsed quadrupole magnets, a Lambertson
septum magnet and a beam dump. If received beam abort signal, the abort kicker will
extract the circulating beam through the extraction window and the Lambertson DC
septum magnet can lead the beam to the beam dump. Pulsed quadrupole magnets can
enlarge the horizontal beam size at the extraction window to prevent the heating
damage to the window. The dumped beam has a length of one revolution time as 10 µs.

Beam abort can be triggered by many sources, including magnets, loss monitors, RF
cavity, Vacuum Pressure and so on. The loss monitors, including PDs, Diamonds
sensors, optical fiber sensors can all issue beam abort with beam loss. And the issued
beam abort signal will be sent to central control room through optical cables. After
synchronization with beam revolution, beam abort signal will be delivered to beam
kickers and every loss monitors for data recording. The process will take 17 µs to 30 µs
varied from the source of beam abort. Given that the typical time for one turn of the



18 Chapter 2. SuperKEKB and Belle II experiments

beam in SuperKEKB is approximately 10 microseconds (𝜇𝑠), the abort process typically
takes 2 to 3 turns.

2.2 Belle II Detectors

The Belle II detector is the centerpiece of the experiment. It is a full–solid–angle detector
with many sub-detector layers surrounding the interaction point of SuperKEKB. The
detector is based on the design of the predecessor Belle detector, with the goal of
maintaining the performance of the Belle detector in the presence of considerably
higher background levels. A sketch of the Belle II detector and coordinate system is
shown in Fig. 2.10. The detector consists of the following sub-detector: Pixel Detector
(PXD), Silicon Strip Detector (SVD), Central drift chamber (CDC), Particle identification
(PID) detector, Electromagnetic calorimeter (ECL), K–Long and Muon detector (KLM).
A superconducting solenoid magnet is placed between ECL and KLM, generating a
1.5 T magnetic field along the beam axis. For the coordinate system, the x-axis is
horizontal and toward the outside of the accelerator tunnel, which is roughly northeast.
y is vertical upward. z is the Belle solenoid axis, which is the bisector of two beams;
roughly toward the direction of the electron beam. 𝜙 is azimuthal angle around z-axis.
𝜙 = 0 is defined for (𝑥,𝑦, 𝑧) = (1, 0, 0). 𝜃 is zenith angle with respect to z-axis. 𝜃 = 0 is
defined for (𝑥,𝑦, 𝑧) = (0, 0, 1)

Here we give a brief introduction for every part, the CDC which is related to our
work will be detailed explained in subsection 2.2.1.

PXD: The PXD is now the innermost sub-detector and directly surrounds the Beam
pipe. The two layers of the PXD are at radii 14 mm and 22 mm from the beam line.
PXD based on DEPleted Field Effect Transistor technology (DEPFET) has a small
pixel as 50 × 55 µm2 for inner layer and 50 × 75 µm2 for outer layer. The primary
purpose of the PXD is to measure the decay vertices under high hit rates coming from
beam–related backgrounds.

SVD: The SVD comprises the outer four layers of the vertex detection sub-detector
at radii 38, 80, 115, 140 mm. Three sizes of double–sided silicon microstrip detectors
(DSSDs) are used for the outer, inner, and forward sections. SVD work for decay
vertices measurement and low–momentum particle track reconstruction.

PID: The PID sub-detector contains two components: a Time Of Propagation(TOP)
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Figure 2.10: The Belle II detector and coordinate system [15]. For the coordinate
system, the x-axis is horizontal and toward the outside of the accelerator tunnel,
which is roughly northeast. y is vertical upward. z is the Belle solenoid axis, which is
the bisector of two beams; roughly toward the direction of the electron beam. 𝜙 is
azimuthal angle around z-axis. 𝜙 = 0 is defined for (𝑥,𝑦, 𝑧) = (1, 0, 0). 𝜃 is zenith angle
with respect to z-axis. 𝜃 = 0 is defined for (𝑥,𝑦, 𝑧) = (0, 0, 1)
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detector and an Aerogel Ring Imaging Cerenkov (ARICH) detector at barrel and
forward endcap region. The TOP detector is used for particle identification in the
barrel region of Belle II, while the ARICH detector performs particle identification in
the forward endcaps region. The main task for PID is to separate Kaon and Pion by
separating angles of Cherenkov photon.

ECL: ECL consists of total 6624 thallium doped caesium iodide CsI(TI) crystals in
the barrel, and 2112 CsI(TI) crystals at end-caps. Photodiodes are glued to every crystal
to detect the scintillation light. The key roles of the ECL is to detect photons, identify
electrons.

KLM: The KLM is made of alternating layers of 470 mm thick iron plates and
detector components. Scintillators are used in the entire endcaps and first two layers of
the barrel section, with RPCs used for the remaining barrel layers. In the barrel there
are 15 detector components and 14 iron plates. In the forward (backward) end–cap
there are 14 (12) detector layers and 14 (12) iron plates. The KLM is used for 𝐾0

𝐿
and 𝜇±

identification.

2.2.1 Central Drift Chamber

The Central Drift Chamber (CDC) is the main tracking detector in the Belle II
Experiment. The main task of the CDC is to measure the momenta of charged particles
precisely by reconstructing charged tracks which curve in the 1.5 T magnetic field
along the 𝑧 axis. The CDC can also contribute to the trigger system and particle
identification.

The CDC is a wire chamber consisting of 42240 field wires and 14366 sense wires,
filled with the gas mixture of 50% He and 50 %𝐶2𝐻6. The wires are arranged radially in
rectangular cells. Every 8 field wires surrounding each sense wire as illustrated in
Fig 2.11. A positive high voltage is applied on the sense wire while field wires are
connected to ground. Charged particles passing through the chamber will ionize the
gas and generate electrons. The electrons accelerate and drift towards the sense wires,
ionizing more gas atoms in the high electrical field surrounding the wire and finally
resulting in an electron avalanche. When the induced signal exceeds the discriminator
threshold on CDC front-end electronics (FE)[16], it is judged as "CDC hit", and its TDC
and ADC are measured.
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Figure 2.11: Sense wire and field wire distribution[17]. Each sense wire is surrounded
by 8 field wires

Fig. 2.12 shows the concept diagram of cross-section for the CDC wires. The total
56 layers of wires in the chamber are arranged into 9 super layers (SL) totaling a
cylindrical volume with an outer radius of 113 cm and an inner radius of 16 cm. The
innermost SL consists of 8 layers of wires with small cell configuration to cope with
the higher background near the IP. The remaining SL have 6 layers. Two types of
orientation of wires are used in CDC, Axial and Stereo as Fig. 2.13. Axial wires are
parallel to the z-axis and used for track 2-dimension reconstruction in 𝑟 −Φ plane. And
stereo wires are inclined/skewed with respect to the beamline, allowing for a 3D
reconstruction of tracks. Stereo SLs are skewed between ±45 mrad𝑡𝑜 ± 74 mrad, where
sign corresponding to the two orientations for stereo wires as Fig. 2.13 (b).
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Figure 2.12: Layer configuration of the CDC with 9 SLs [17].
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Figure 2.13: Wire orientations of CDC: (a) Axial wires are parallel to beamline (z-axis);
(b) Stereo wires are skewed with respect to beamline [18].

2.2.2 Trigger System

The Belle II detector is expected to receive a total 20 kHz trigger rate for physics process
at designed luminosity, as illustrated in Table 2.2. Samples of Bhabha and 𝛾𝛾 events
will be used to measure the luminosity and to calibrate the detector responses. In order
to deal with the copious amount of beam-induced background and select events for
physics analysis with high efficiency, the Belle II trigger system is partitioned into
two consecutive levels. The level-1 trigger, implemented in deadtime-free pipelined
hardware, performs a partial online event reconstruction and sends a signal to the High
level trigger(HLT) whenever certain criteria are satisfied. The HLT is implemented in
software and performs a more detailed selection on the events triggered by the L1
trigger in order to further reduce the background among the events. Here we give a
brief introduction for level-1 trigger.

level-1 trigger

Level-1 trigger which implemented in deadtime-free pipelined hardware, should fulfill
the following requirements:

1. High efficiency for physics events from Υ(4𝑆) → 𝐵𝐵 and from continuum;

2. Maximum average trigger rate of 30 kHz;

3. Fixed latency of about 4.2 µs;
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Physics Process Cross Section (nb) Rate (Hz)
Υ(4𝑆) → 𝐵𝐵 1.2 960

Hadron production from continuum 2.8 2200
𝜇+𝜇− 0.8 640
𝜏+𝜏− 0.8 640

Bhabha (𝜃 lab ≥ 17◦) 44 350(∗)
𝛾𝛾 (𝜃 lab ≥ 17◦) 2.4 19(∗)

2𝛾 processes (𝜃 lab ≥ 17◦, 𝑝𝑡 ≥ 0.1,GeV/𝑐) ∼80 ∼15000
Total ∼130 ∼20000

* The 𝛾𝛾 and Bhabha rate is pre-scaled by a factor of 1/100 due to the large cross section.

Table 2.2: Total cross-section and trigger rates at designed luminosity from various
physics processes at Υ(4𝑆) [19]. The 𝜃 lab is the difference 𝜃 of two particles in the
laboratory coordinate system.

4. Timing precision of less than 10 ns;

Considering expected physics trigger rate, we should reduce the total level-1 background
trigger rate to 10 kHz at luminosity of 6 × 1035, cm−2s−1. The schematic overview of
the Belle II trigger system is shown in Fig. 2.14. Full level-1 trigger consist of four
sub-trigger collect information from each corresponding Belle II sub-detectors, Global
Reconstruction Logic (GRL) and Global Decision Logic (GDL). The CDC sub-trigger
provides the charged track information (momentum, position, charge, multiplicity).
The ECL sub-trigger gives energy deposit information, energy cluster information,
Bhabha identification, and cosmic-ray identification. The TOP sub-trigger gives
precise event timing. The KLM sub-trigger gives muon track information. GRL will
collect information from four sub-trigger and apply algorithms for the combination of
sub-trigger information. Finally, all the information deliver to GDL to make a final
decision of whether the event meet certain condition and should be kept or not. The
Level-1 trigger signal is designed to be output to the determination in 4.2 µs after the
beam collision.
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Figure 2.14: Schematic diagram of the full Level-1 trigger system[20]
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3
Sudden beam loss and Fast beam loss

monitors

This study focuses on the observation of an increasing occurrence of sudden beam
loss (SBL) events during recent SuperKEKB operations. These events generated from
the rapid loss of a portion of the stored beam, and their underlying causes remain
unknown. The SBL-induced background can be detrimental to the Belle II detectors,
and in some cases, cause damage. Our research seeks to identify the specific locations
where SBL events occur and to gain a deeper understanding of their root causes. This
knowledge will enable us to develop strategies to mitigate the adverse effects of SBL
and prevent damage to the detectors.

3.1 Beam loss

Beam losses occur when electrons/positrons within a beam collide with the inner
walls of the beam chamber, leading to a reduction in the overall beam intensity.
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Electromagnetic showers can be generated as a result of these collisions, with some
of the shower particles detectable outside the beam chamber. Generally speaking,
beam losses are typically unavoidable and are localized at the collimator system or
other aperture limits. These beam losses can occur continuously during accelerator
operation and are associated with the beam lifetime and transport efficiency within
the accelerator. The minimum possible loss rate is determined by the theoretical
limit on the beam lifetime, which is mainly influenced by collective effects, including
Touschek effect, beam-beam interactions, collisions, transverse and longitudinal
diffusion, residual gas effect, halo scraping and beam instabilities [21]. Typically, these
beam losses manifest over extended time scales, surpassing 10 turns, and certain
instances can be mitigated through the utilization of collimators.

3.1.1 Sudden Beam loss

Sudden beam losses (SBLs) differ from general beam losses in that they are rapid,
harmful, and their causes remain unknown. These events occur less than three or
four turns, as illustrated in Fig. 3.1. At SuperKEKB SBLs more likely occurred in the
Low Energy Ring (LER) which is roundly two times than in the High Energy Ring
(HER). Certain SBLs that occurred in the LER led to severe damage to the vertical
collimators, as depicted in Fig. 3.2. This damage made collimators difficult to effectively
control the beam background, and some SBLs resulted in large radiation doses around
the interaction region (IR), which in the worst case caused quenches of QCS. These
"catastrophic" events seem to be more frequent at higher beam currents, limiting the
maximum beam currents during machine operation. Thus, our primary objective and
immediate concern is to identify the root causes of these sudden beam loss events and
devise solutions to attain high luminosity.

3.2 Fast loss monitor system

To pinpoint the locations of SBLs, a beam loss monitor system that covers the most
critical regions and possesses fast response times is essential. At present, the beam
monitoring system primarily used a combination of PIN diodes and ionization chambers
that typically have a response time of 20 µs [10] determined by the readout electronics,
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Figure 3.1: Bunch Current monitor record in June 2021. 𝐼 is the current for single
bunch and Δ𝐼 = 𝐼 (𝑏, 𝑛) − 𝐼 (𝑏, 𝑛 − 1), where b is the bucket number and n is the number
of turns. This sudden beam loss happens in only 20 µs

Figure 3.2: LER D2V1 collimator heads severely damaged by the sudden beam loss in
June 2021.
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which is insufficient for the precise location determination for SBLs, because for
previous SBLs we found that most beam loss monitors fired at same time and can not
determine a certain first fired monitors. Besides, in order to perform measurements
in proximity to the main rings, it is imperative that the monitors should meet the
requirements of minimal efficiency deduction at a radiation level of approximately few
hundreds to one thousand µGy/h, which is the typical radiation level at collimators[22].
To meet this requirement, we have developed a fast loss monitor system consisting
of two types of fast loss monitors: Electron Multiplier Tubes (EMTs) and Photon
Multiplier Tubes (PMTs) with scintillators. Both are directly connect to the new readout
system utilizing oscilloscope and TDC module, recording timing and waveform with a
precision of ∼ 8 ns.

3.2.1 Fast loss monitor detectors

Photon multiplier tube with scintillator

Excepted EMT, we use pure CsI attached to PMT using optical glue as an option for our
loss monitors, as showed in Fig. 3.3.

Figure 3.3: Pure CsI crystal and PMT attached with CsI

This setup works as showed in Fig. 3.4. An Incident particle from beam loss can
excite electrons in CsI crystal and then it rapidly de-excite by emitting scintillation
photons. Emitted photons are converted into photo-electrons by the photo-cathode
and then focused and multiplied by an arrangement of dynodes in multiple stages
connected in series to the externally applied High Voltage. The amplified signal is
directly readout from oscilloscope. Pure CsI crystal have a very short decay time ∼
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16 ns, which can satisfied the fast response requirement.

PMT

High voltage

Photoelectrton

Optical glue

Photoncathode

Incident Particle

Pure CsI crystal

oscilloscope

dynodes

Figure 3.4: Schematic drawing of the PMT setup. Incident particle generate photons
in pure CsI and photons are converted into photo-electrons by the photo-cathode
and then focused and multiplied by an arrangement of dynodes in multiple stages
connected in series to the externally applied High Voltage. Signal are directly readout
from oscilloscope.

Electron multiplier tube

As shown in Fig. 3.5, Electron Multiplier Tubes (EMTs) are essentially Photon Multiplier
Tubes (PMTs) without a photocathode; instead, aluminum is deposited on the cathode
to achieve high radiation tolerance. EMTs originally have been developed as muon
beam monitor in the T2K experiment [23]. EMTs were examined to have great radiation
tolerances that have less than 5% degradation under ∼ 2 MGy/h[24].

When a charged particle passes through the EMT, it produces secondary electrons
either at the surrounding aluminum cathode or at the dynodes. The emitted electrons
are then accelerated, bombard the downstream dynodes, and produce additional
electrons.

For our fast beam loss monitors, we used the same prototype EMTs as T2K
experiments but change the divider circuits to E10679-Y003 [26], which provides a
maximum operation voltage at 1100 V. These EMTs are manufactured from R9880U
PMT and provided with time response∼ 2ns [25]. Table 3.1 show the Specifications of
EMTs and PMTs setups.
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Figure 3.5: (a)Origin R9880U PMT [25] (b) Prototype EMT with replaced aluminum
cathode (c) Prototype EMT with circuit

Size(mm) Gain Decay time(ns) Rise Time (ns) Transit Time (ns) Max HV(V)
EMT Setup Dia.16 2.0 × 106 NAN 0.57 2.7 1100
PMT Setup Dia.60 2.5 × 106 16 0.8 16 3500

Table 3.1: Specifications of EMT and PMT setup. Here, taking the same time response
as R9880U for EMTs. PMTs setup show H2431 PMT here.

Detectors location

To detect the beam loss effectively with limited number of fast loss monitors and cable,
we installed at possible location for sudden beam loss at LER, included:

• D06H3: A horizontal collimator. It is an important collimator to protect the
accelerator components in the main ring from the accidental firing of the LER
kicker magnet.

• D06V1: A primary vertical collimator used in the LER. Its position is phase-
matched with the D02V1 collimator located closest to the interaction point
(IP) or Belle II detector. The D06V1 is primarily employed to control the beam
background resulting from beam injection.

• D06V2: A vertical collimator. It is located downstream of the D06V1 and serves
as a complement to D06V1 for beam background control by having a phased
difference from D06V1.

• D02V1: A primary vertical collimator for LER. It is located closest to the IP (or
Belle II). If the collimator head gets damaged, it could significantly increase the
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beam background and may require stopping the machine operation.

All fast loss monitors are installed around collimator because that the collimators are
the narrowest parts in the mainly where we most likely to detect SBLs first. We also
installed 3 fast loss monitor at HER rings. But with the limited number of monitors, we
can hardly perform detail analysis for HER sudden beam loss, thus in this thesis we
will focus on the analysis for LER. These collimators and fast loss monitors location in
the main ring show in Fig. 3.6.

D02V1 CsI+PMT
D01V1 CsI + PMT

D09V3 CsI + PMT

D09H2 EMT

D06H3 EMT

D06V1 CsI+PMT

D06V2 EMT

Tsukuba Hall

D06 station
D09

 station

Figure 3.6: Location of each collimator in the main ring and the installed fast loss
monitors.

The photo of install EMT and PMT+ CsI scintillator are showed in Fig. 3.7. Consid-
ering the good radiation hardness of EMTs, they are set closed to collimators (∼ 10 cm).
While for PMTs, they are set > 100 cm from the collimators.

3.2.2 Readout system, Time synchronization and White rabbit
module

NH-5D-2E (BNC) cables are used for signal transition and NH-TVECX (SHV) cables are
used for HV providing, both of them uses polyethylene sheath material for flame
retardant. In order to minimize electronics noise and cable costs, each fast loss monitor
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(a) (b)

EMT

Collimator

Figure 3.7: (a) Installed EMT at D06H3 collimator (b) Installed PMT+ CsI scintillator at
D02V1 collimator

is connected to the nearest local control room (LCR) using coaxial cable for data
acquisition. We employ a dual system setup, as illustrated in Fig. 3.8, to facilitate
timing and signal recording from the fast loss monitors. The monitor signals are
directed to the 3403D MSO oscilloscopes for waveform storage and precise timing
measurements; the oscilloscopes are triggered by the beam abort signal and would
record 5 ms waveform before and after beam abort. Simultaneously, the signals are
passed through a discriminator, which applies a specific threshold, and a level adapter
to convert the NIM signal to TTL. The resulting signal is then fed into the TDC module,
enabling the recording of timing information for every signal exceeding the threshold.

Figure 3.8: Concept diagram for fast loss monitor readout system.

To achieve synchronization among the various fast loss monitors dispersed over
a few kilometers, we employ two primary strategies. Firstly, the oscilloscopes are
equipped to capture the beam abort trigger signal sent from the Central Control
Building (CCB) using optical cables of known length. By comparing the signal from



3.2 Fast loss monitor system 33

the fast loss monitor with the beam abort trigger, we can calculate a relative time
difference, enabling effective comparisons across different local systems.

Secondly, we use the White Rabbit system [27](WR). WR is a fully deterministic
Ethernet-based network for general purpose data transfer and synchronization. It can
synchronize over 1000 nodes with sub-ns accuracy over fiber lengths of up to 10 km.

The slave nodes in our system comprise the Simple PCIe FMC Carrier (SPEC)[28]
and the FMC-DIO card[29], which are connected to the grand-master module and
synchronize their internal timestamp with that of the grand-master. These slave nodes
function as TDCs in our system and offer an accuracy of 8 ns in providing the GPS
timestamp for all input entries. The pictures of installed WR system shown in Fig 3.9

Figure 3.9: White Rabbit modules: the upper white module in the left figure is the GPS
receiver. The black 1U-height module under it is the grand-master module of White
Rabbit timing system. The right two pictures show the slave node. The PCI Express
type slave module is inserted into the commercial PC. The individual slave nodes are
connected with the grand-master module via the single mode optical cable.

In addition, injection signal, revolution signal, beam abort trigger, and beam gate
timing are also recorded and synchronized with White Rabbit to enable a comparative
study between fast loss monitors, beam monitor, and beam status.

The dual system setups can serve as complementary to each other, allowing for
comprehensive analysis. One aspect involves recording the waveform of each fast loss
monitor in conjunction with beam aborts, providing detailed information about the
monitor’s response. The other aspect involves precise timing measurements of signals
that exceed a specified threshold using White Rabbit (WR) technology. By combining
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these two approaches, we can obtain a comprehensive understanding of the fast loss
monitor behavior and ensure accurate timing measurements for relevant signals.

Table. 3.2 summarized the installed Fast loss monitors specification.

Location Type HV (V) LCB Cable length (m)
LER

D02V1 PMT 500 Tsukuba B4 158
D06V1 PMT 600 D06 station 151
D06V2 PMT 1200 D06 station 114
D06V2* EMT 650 D06 station 114
D06H3 EMT 650 D06 station 250

HER
D01V1 PMT 500 Tsukuba B4 157
D09V3 PMT 950 D10 station 223
D09H2 EMT 650 D10 station 200
* At D06V2, we switch from PMT to EMT at April 21th 2022 because of possible PMT damage.

Table 3.2: Summary of installed PMTs and EMTs setup.
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4
Timing analysis of sudden beam loss

In order to pinpoint the locations of SBLs, we conducted a meticulous timing analysis
of both fast loss monitors and other beam monitors. The subsequent sections will show
the details of the timing analysis, covering topics including methodology employed,
calibration procedures, and the synchronization.

4.1 Beam loss timing detection

We employed distinct timing methods based on the signal discrepancies observed
across various monitors. These methods are categorized into three types: 1. Fast loss
monitors, 2. Bunch current monitors and Beam Oscillation Recorder, and 3. Interaction
region monitors and PIN diode.
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4.1.1 Fast loss monitor

The timing analysis is mainly focused on Fast loss monitors. The typical signal from
fast loss monitors is showed in Fig. 4.1. Both EMT and PMT have fast response for
beam loss with rising edges ∼ 20 ns for PMT and ∼ 10 ns for EMT.

21

D06V1 PMT
D06V2 EMT 40 ns

Figure 4.1: Waveform for D06V1 PMT (blue line) and D06V2 EMT (Red line) when
injection cased beam loss happen at 5th June 2022

As outlined in Section 3.2.2 of Chapter 3, we have implemented a dual system for
the readout of fast loss monitors. In the case of the oscilloscope configuration, we
employed a "double threshold method" to measure the precise timing of the rising
edges of the beam loss signal, as depicted in Fig. 4.2. This approach involved setting a
high threshold to capture large beam loss events while minimizing incorrect timing
due to pedestal noise. Then, a low threshold was utilized to searching for every first
point crossing it, in the range of (−100 µs,100 µs) centered on the point crossing the
high threshold. The timing cross low threshold is regarded as timing for this event.
When faced with beam loss events resulting in multiple peaks, we discerned individual
peaks by detecting every two instance of the signal crossing the low threshold. The
specific values for the high threshold and low threshold were adjusted accordingly,
taking into account the gain and pedestal noise inherent in the system. In detailed,
We summarized the amplitude for pedestal noise into a histogram and calculated its
standard deviation 𝜎 ; then we set the low threshold as the 5 times of the 𝜎 and round
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up to a multiple of 10 for simplification. For high threshold setting, we manually pick
one hundred events with injection beam loss, check the minimum of signal amplitude,
and set the threshold as half of the minimum of signal and round down to a multiple of
10. If it less than 10𝜎 , we forced it to be 10𝜎 for pedestal noise rejection. And for TDC
& WR setup, we directly used the timing from TDC module which recorded the timing
from discriminator crossing threshold with precision ∼ 8 ns. The threshold setting
shows in Table. 4.1.

Fast loss monitor D02V1 D06V1 D06V2 D06H3
High Threshold (mV) -50 -50 -100 -300
Low Threshold (mV) -10 -30 -40 -40
Discriminator (mV) -75 -130 -80 -90

Table 4.1: Threshold setting for fast loss monitor timing

Figure 4.2: Double threshold timing method. Find a point crossing the high threshold
(red line), then search for every first points crossing the low threshold (blue line) as
precise timing point. Multi-peaks events are searched in the range (-100μs, +100μs)
and distinguished when every peaks cross the low threshold twice (black dash line
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4.1.2 Bunch current monitors and Beam Oscillation Recorder

In the case of the BCM and BOR, our objective is to identify specific bunches that
exhibit changes in bunch current or bunch oscillation. To achieve this, we analyze the
difference in BCM/BOR data between every single bunch and the same bunch previous
turn. As showed in Fig. 4.3, We determined the timing from Δ𝐼 = 𝐼 (𝑏, 𝑛 − 1) − 𝐼 (𝑏, 𝑛)
for BCM, and Δ𝑥 = 𝑥 (𝑏, 𝑛 − 1) − 𝑥 (𝑏, 𝑛) for BOR, where 𝑏 is the bucket number, 𝑛 is
number of turns, 𝐼 for bunch current and 𝑥 is the beam vertical/horizontal position. The
start point of Δ𝐼 and Δ𝑥 are identified by locating the first instance of two consecutive
bunches with above a certain threshold, or a single bunch above twice the threshold.
The thresholds are set as 3 times of standard deviation for pedestal noise amplitude
distribution.

Figure 4.3: BCM and BOR timing method. We determined the timing from Δ𝐼 =
𝐼 (𝑏, 𝑛−1) − 𝐼 (𝑏, 𝑛), and Δ𝑥 = 𝑥 (𝑏, 𝑛−1) −𝑥 (𝑏, 𝑛) where 𝑏 is the number of bunches, 𝑛 is
number of turns, 𝐼 for bunch current and 𝑥 is the beam vertical/horizontal position. The
start point of Δ𝐼 and Δ𝑥 are identified by locating the first instance of two consecutive
bunches with above a certain threshold, or a single bunch above twice the threshold.
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4.1.3 PIN photo-diodes

In the case of PDs, which are readout from an integral circuit and exhibit a time
responding time of approximately 20 µs, our primary objective is to accurately determine
the starting point of each signal. The waveform and timing analysis method are
illustrated in Fig. 4.4. Initially, we identify the continuous rising segments of the
waveform that exceed the threshold, which typically defined as three consecutive
sample points with an increasing trend. This step helps mitigate errors introduced
by pedestal jitters. Subsequently, we simultaneously examine both the forward and
backward portions of the waveform to identify sections with a 10-point positive average
slope. We locate the last point with a positive slope in the opposite direction. Finally,
we impose a minimum edge width requirement to discriminate against background
noise.

Figure 4.4: PIN diodes timing method. Blue line is the waveform of PIN diode, red line
show the estimated rising edge from following 4 steps: (a) Find the continuous rise
parts above threshold. (b) Simultaneously look forward and backward for waveform
with a positive average slope. (c) Find the last point with a positive slope in the
opposite direction. (d) Reject background with a cut on width of edge
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4.1.4 Diamonds sensors and Optical Fiber sensors and others

For Diamonds sensor’s case, due to the limited sample rate as 2.5 µs/s, we only time
the first point crossing the threshold. As for optical fiber sensors and special PDs
which deliver the raw signal to recorder, due to their fast time response around few
nanoseconds, we also timing it by finding the first point crossing threshold.

4.2 Calibration and synchronization

Calibration and synchronization for all timing from different monitors and local
readout systems are necessary for comparison between them. As showed in Fig. 4.5, a
beam loss causing beam abort will send the abort signal to every local system, which is
the best reference for comparisons. For BCM/BOR case, the timing of beam dumped is
recorded and can deduce the beam abort timing also (see Fig. 4.3). To calibrate out the
cable length from fast loss monitors to local system and from central control building
(CCB) to local system, we directly measured delay of analogue signal and optical cables
by using a test pulse and showed as Table. 4.2.

analogue cable Delay time (µs)
D02V1 PMT to Tsukuba B4 0.799
D06V1 PMT to D06 station 0.765

D06V2 PMT/EMT to D06 station 0.579
D06H3 EMT to D06 station 1.250

Optical cable Delay time (µs)
CCB to D06 station 3.77
CCB to D02 station 10.01

Table 4.2: Delay of the optical and analogue cable length for LER BLMs

We use the Δ𝑇 = 𝑡𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑠 − 𝑡𝑎𝑏𝑜𝑟𝑡𝑠𝑖𝑔𝑛𝑎𝑙 to compare different monitors. And including
the calibration, Δ𝑇 can be writ en as:

Δ𝑇 = 𝑡monitor − 𝑡abort
𝑡monitor = 𝑡

local
monitor − 𝑐

local
monitor

𝑡abort = 𝑡
local
abort − 𝑐

local
CCB

(4.1)
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Figure 4.5: Timeline for a general beam loss events

Where 𝑡monitor and 𝑡abort signal are the actual monitor timing and abort timing; 𝑡 localmonitor and
𝑡 localabort are monitor timing and abort timing recorded in local system; 𝑐 localabort and 𝑐

local
monitor

are the transition time for abort signal and monitors signal due to analogue/optical
cable length. By calculating the Δ𝑇 for different monitors, we can pinpoint which
monitors detected beam loss first. All the following discussion is based on Δ𝑇 .

4.3 Multi-sensor comparison

Upon completing the calibration and synchronization process, we acquired the Δ𝑇
values for each sensor. To examine the timing of beam loss events and determine if
they originated from the same bunches, we compiled the data into a location versus
timing plot. A representative example of a sudden beam loss event in June 2022 is
illustrated in Fig. 4.6. The x-axis represents the distance from various detectors to the
interaction region, with each vertical dashed line indicating the position of a specific
detector. The y-axis represents the measured Δ𝑇 . The upward dashed line denotes the
inferred time position relationship based on the first bunch with observed current
loss at the BCM, and the interval between adjacent slashes corresponds to one turn
(approximately 10.061 us). From the plot, we can discern the following information:

a) The EMT at D06V2 detected the initial beam loss.

b) D06V2 and D02V1 observed the beam loss in the first turn, while the BCM and
D06V1 detected it in the subsequent turn. These losses originated from nearly
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identical bunches.

c) The beam loss was initially detected two turns prior to the beam abort.

Figure 4.6: Measured beam loss timing of the all sensors with the sudden beam loss at
10th June. The X axis shows the distance from different detectors to the interaction
region, and each vertical dashed line represents the position of a particular detector.
Y-axis show the Δ𝑇 . The upward dashed line represents the time position relationship
inferred from the first bunch with current loss observed at BCM. Every point with
corresponding to one timing point of various sensors.
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5
Analysis result for sudden beam loss

We have analyzed all beam loss events in LER within 2022 physics run period. Sudden
beam loss events were selected out from all beam abort events by requiring a visible
current loss in BCM and not related with beam injection. Between February 2022
and July 2022, a total of 57 beam loss events were selected out. We performed a
comprehensive timing analysis for each of these events using various monitoring
systems, including fast loss monitors, PIN diodes, BCM/BOR, IR monitors, and
additional PIN diodes/fiber detectors located upstream and downstream of the D06V1
collimators, which were installed during this period. In this chapter, we present a
detailed analysis of all the sudden beam loss events that occurred in 2022, followed by
a comprehensive discussion of the results.

5.1 overview of all sudden beam loss events in 2022

We begin by assessing the selected SBLs and the resulting occurrence of QCS in relation
to the beam current, bunch current, and collimator conditions, as depicted in Fig. 5.1.
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We can manually divide the timeline into two periods: before and after May 17th,
when significant beam loss led to damage in the D06V1 collimator. Prior to May 17th,
it is evident that large SBLs occurred whenever the bunch current reached 0.7 mA,
causing QCS quenches and occasional collimator damage. Following the widening of
the damaged D06V1 collimator on May 17th, QCS quenches became more frequent
even with lower bunch currents. In response, we tightened the D06V2 collimator twice
on June 3rd and again on June 14th, aiming to safeguard the D02V1 collimator and
prevent further QCS quenches. These observations highlight a pronounced correlation
between the condition of the collimators in the D06 section and the occurrence of
QCS quenches. As for the overall frequency of SBLs, no significant correlation can be
deduced from it and the bunch current.

Figure 5.1: (a) QSC quench events comparing with beam current and bunch current
[30] (b) Total number of sudden beam losses per weeks
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5.2 Timing analysis result for sudden beam loss

The 57 events that occurred between March 2022 and July 2022 were analyzed using
the methodology outlined in Chapter 4. To determine which sensor detected the
beam loss first in each event, we calculated the Δ𝑇 between the sensors, as shown
in Fig. 5.2. In this figure, we excluded the timing data from PDs since our analysis
revealed that PIN diodes with integral circuits exhibited slower response compared to
fast loss monitors. Details of PDs timing comparing with fast loss monitors (FLMs) are
showed in Fig. 5.3. If a sensor detected multiple peaks within an event, we selected the
fastest Δ𝑇 . A detailed summary of the timing results is presented in Tab. A.1 in the
appendix. In 56 out of the 57 cases, the fastest Δ𝑇 observed between the fast loss
monitors and BCM fell within the range of −10 µs to −40 µs, indicating that these beam
losses occurred within 4 turns. The rest one event at 22nd June was detected at D06V2
WR 7 turns before and continued to see the signal every turn before beam abort. We
summarize the fastest sensor location into a histogram as illustrated in Fig. 5.4, the
sensors at D06V1 or D06V2 detected the initial beam loss in 43 out of 49 beam loss
events that did not result in QCS quenching. On the other hand, 7 out of 8 beam loss
events that caused QCS quenching were first detected at D02V1. By combining the
information presented in Fig.5.4 and Fig.5.1, we observe a correlation between the
condition of the collimators and the initial location of detected SBLs. Following the
damage and widening of the D06V1 collimator, it became more frequent for SBLs to be
initially detected at D02V1, and in all such instances, a subsequent QCS quenching
occurred. Only after tightening the D06V2 collimator did the D02V1 fast loss monitor
cease to detect SBLs as the first indication, with the D06V2 monitor assuming that role
instead. This suggests that in cases where D02V1 is the first to detect SBLs, the onset
of sudden beam loss may also be before the D02V1 section. Despite that, 5 of 57 events
we saw the beam position deviation at BOR before our beam loss monitors detected
SBLs, this may indicate a beam instability before the beam loss.

We have selected a summary figure illustrating beam loss events with significant
radiation doses at the interaction region (IR) (> 300 mrad), as shown in Fig.5.5. From
these figures, it is evident that in cases where there was no QSC quench, the fast loss
monitors at the D06 collimators detected beam loss events one or two turns before the
current loss was detected by the BCM. Moreover, in 5 out of 8 events, the fast loss
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Figure 5.2: Δ𝑇 for fast loss monitors, IP sensors and BCM/BOR for all beam loss events
in LER.
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Figure 5.3: Δ𝑇 for fastest fast loss monitors and fastest PDs in LER. Only 1 events PDs
had similar timing as FLMs, others PDs were slower than FLM.
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Figure 5.4: Categorization for all beam loss events

monitors detected losses in nearly the same bunches that experienced beam current
loss. In the remaining three events, the BCM detected a slight loss in bunch current
beforehand, while the fast loss monitor signals corresponded to subsequent bunches
with significant current loss.

Regarding QCS quench events presented in Fig.5.6, the fast loss monitor at the
D02V1 collimator primarily detected the initial beam loss. In 5 out of 8 events, the fast
loss monitor detected losses in almost the same bunches as the BCM. In two of the
remaining three events, we observed a single bunch current loss beforehand, and in the
remaining event, one of the BCMs detected a small bunch current loss prior to the
quench. Notably, in all these events, the bunches where the fast loss monitors first
detected beam loss were consistent with the bunches that exhibited a large current loss
detected by the BCM.

SBLs are more likely to be first detected in the D06 section first. To investigate
this further, PIN diodes without integral circuits and fiber detectors were installed
upstream and downstream of the D06V1 and D06V2 collimators starting from June 8th.
The cable lengths for these newly installed sensors were assumed to be the same as
those for the D06V2 and D06V1 fast loss monitors, which may introduce a deviation of
a few microseconds. A comparison between these upstream/downstream monitors and
our fast loss monitors is presented in Tab. 5.1. After June 8th, in 10 beam loss events,
the sensors downstream of D06V1 (D06V2) detected the beam loss at the same turn in 7
(10) of these events, while the sensors upstream of D06V1 and D06V2 did not detect
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Figure 5.5: Measured beam loss timing of the all sensors with the large diamond does
of > 300 mrad or BCM loss >15%.
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Figure 5.6: Measured beam loss timing of the all sensors with the sudden beam loss
which causes QCS quench.
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any signal at all in these 10 events.

Events Date Upstream D06V1 Downstream Upstream D06V2 Downstream
2022/6/9 4:26 NAN -8.0 -7 NAN -7.8 -8
2022/6/10 15:15 NAN -15.3 -10 NAN -14.9 -13
2022/6/10 21:44 NAN -6.7 -5 NAN -14.9 -14
2022/6/13 8:47 NAN -15.7 NAN NAN -16.4 -15
2022/6/14 12:44 NAN -11.0 -8 NAN -19.9 -17
2022/6/14 14:34 NAN -7.2 -5 NAN -6.8 -6
2022/6/16 2:01 NAN -25.3 -4 NAN -25.4 -22
2022/6/16 22:18 NAN -15.2 2 NAN -16.5 -15
2022/6/18 20:32 NAN -9.0 -9 NAN -8.8 -9
2022/6/20 11:28 NAN -10.5 -10 NAN -10.78 -10

Table 5.1: Δ𝑇 (𝜇s) for D06V1 and D06V2 upstream and downstream timing comparing
with fast loss monitor for beam loss events after installing

5.3 Hypothesis for sudden beam loss

Based on the aforementioned observations, we have explored various potential causes
for SBL events. Our analysis revealed that the SBLs occur rapidly, without any preceding
small or gradual increase in beam losses, which is characteristic of conventional beam
instabilities. Furthermore, the BOR data did not exhibit significant dipole oscillations
prior to the SBLs, as would typically be observed in parallel with conventional beam
instabilities. These findings strongly suggest that the SBLs are not attributable to
conventional beam instabilities and SBLs may be located between BCM/BOR and
D6. And the SBLs can occur at different bunch current and beam current without
certain threshold, while the conventional cause of beam loss including transverse
and longitudinal diffusion, intra-beam scattering and Touschek scattering have a
well-defined threshold of bunch current or total beam current. And all these SBLs
should not be related with injection events since we reject events which related with
beam injection in events selection.

Considering the influence of the dust effect, [31] conducted simulations assuming
the SBLs to be extreme cases of vacuum burst (dust) events. Their simulations assumed
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aluminum dust particles with a radius of 500μm, and the scattered particles were
expected to impact the D06V2 collimators. One of their simulation results is shown in
Fig. 5.7, indicating that vacuum burst events of this nature should be initially detected
by the horizontal collimators D06H1 and D06H3. However, in our observations, it is
consistently the vertical collimators D06V1, D06V2, or D02V1 that detect the SBLs first,
contrary to the simulation results.

Figure 5.7: Result of tracking the scattered beam that interacted with dust using
PHITS and SAD.[31]

And [32] proposed a”fireball” hypothesis. It illustrated the physical process as:

1. Micro particles in a vacuum with high sublimation points such as carbon and
molybdenum are heated by a strong RF field, turning into a fireball with a
temperature reaching 1000◦C or higher.

2. The fireball lands on a metal surface with a low sublimation point;

3. The plasma is generated around the landing point due to the rapid and substantial
temperature increase;
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4. The plasma evolves with timely eating the RF-field energy, growing up into a
macroscopic vacuum arc.

5. The vacuum arc interacts with the circulating beam and causes beam losses.

Figure 5.8: Physical process proposed by”fireball” hypothesis. Micro particles in a
vacuum with high sublimation points can be heated by a strong RF field, turning into
a fireball, landing on a metal surface with a low sublimation point and generating
plasma. Plasma growing up with RF-field energy and interacted with circulating beam,
inducing beam loss.

The collimators within the system consist of two distinct materials with significantly
different sublimation points. The collimator head is composed of tantalum, tungsten,
or carbon, while the vacuum chamber is made of copper. Consequently, in principle,
fireball breakdowns can potentially manifest in the proximity of the collimators. To
address this possibility, the use of acoustic emission detection has been proposed,
leading to the installation of acoustic sensors at the D06 section at the end of the 2022
physics data collection period. As of now, there is a lack of direct evidence supporting
the fireball hypothesis, and ongoing investigations are being conducted to shed further
light on this matter.

In conclusion, the cause of sudden beam loss events is not fully understood yet. Most
of collective effects seem not to be the cause of sudden beam loss events. Beam-dust
interaction cannot explain the vertical beam loss in sudden beam loss events. The
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fireball hypothesis looks interesting, but there is still no observable evidence that an
electric discharge is occurring around the collimator.

5.4 Further investigation and Countermeasure for

sudden beam loss

Based on this study, to further investigate the reason of SBLs and protect detectors
from SBLs, we are working on following issues:

1. Implement the additional fast loss monitors at the LER/HER injection points and
the extra collimators. This expansion in monitoring capabilities allows us to
delineate a more precise and stringent region for identifying potential causes of
sudden beam loss.

2. Send abort requests using laser transmission through air (instead of optical fiber).
As showed in Fig. 5.9. This can speed up the transmission time of beam abort by
30 percent in theoretical to mitigate damage by SBLs. [33]

3. Add additional BOR at D06 section and additional scintillator detector at new
installed D05V1 collimator. This can provide more comprehensive monitors for
beam profiles. And later one can also be used to directly send abort signal and
fast the abort process. [34]

4. All collimator heads will coat with copper. One possible cause of the“fireball”
is the particle from damaged collimator heads. This measure is aimed to prevent
such issue.

5. Utilize the fast loss monitors for collimator tuning in order to prevent QCS
quench and Belle II detector damage. At the end of the 2022 physics run, we
have adjusted the collimator based on the fast loss monitor finds, which finally
reduce the occurrence of QSC quenches. We prefer to continue to refer to fast
loss monitors and adjust collimators.

6. Exam the fireball hypnosis with the installed acoustic sensors. [32]
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The location of all sensors are showed in Fig. 5.10. Based on our study, these
implemented measures aim to enhance our comprehension of SBLs and mitigate their
associated damages.

Abort 
module

Receiver 
module

Optical fiber (n~1.5)

Laser
diode

Receiver 
module

Laser transmission 
through air (n~1.0)

Laser position
adjustment mirror

Laser position 
feedback sensor

Figure 5.9: Concept diagram of sending abort requests using laser transmission[33].
The underdeveloped Laser position adjustment mirror Laser position feedback sensor
are used to stabilize the laser orbit after long distance transmission.
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New D06H4 collimator

New D05V1 collimator

FLMs plan to install

Acoustic sensor

Scintillator detector to be install

BOR to be install

Figure 5.10: Location for monitors that planned to install. Extra fast loss monitors
will be installed at LER/HER injection points and D06H4, D05V1, D09V1, D12V1 and
D12V2 collimators. BOR will be installed at D06 section. Acoustic sensors are already
installed at D06V1. The scintillator detector which can trigger beam abort will be
installed at D05V1. Besides, a new beam abort line will be installed at D06 section and
proposed to utilize the laser transmission for abort request to CCR.
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6
level 1 CDC trigger system

This chapter presents the current status of Level 1 trigger rate and an overview of the
CDC trigger system, which is a real-time trigger system specifically designed to identify
charged tracks detected by the CDC. The workflow and challenges encountered in the
current implementation of the level 1 CDC trigger system are discussed in detail in this
chapter.

6.1 Level-1 trigger rate and limitation

The Level-1 trigger rate is required to be less than 30 kHz, as a limitation from Belle
II DAQ and sub detector frontend. However, in June 2022, SuperKEKB reaching a
luminosity of 4.7 × 1034 cm−2s−1, which is about 13 times smaller than the target
luminosity of 6.0 × 1034, cm−2s−1, when the level 1 trigger rate exceeded 10 kHz. It
becomes crucial to reduce the level 1 trigger rate in order to achieve higher luminosity.

The level 1 trigger rate is influenced by various trigger conditions (trigger bit).
Once any of these trigger conditions are met, the corresponding data will be sent to the



58 Chapter 6. level 1 CDC trigger system

HLT for further processing. The typical trigger condition can be categorized into
two pars: 𝐵𝐵 trigger and low-multi trigger, where the later one corresponding to
the events with a low particle multiplicity including 𝑒−𝑒+ → 𝜏+𝜏−, 𝑒−𝑒+ → 𝜇+𝜇−, and
possible dark sector. The ECL trigger (ECLTRG) and CDC trigger (CDCTRG) are the
two primary components of 𝐵𝐵 trigger and low-multi trigger. Table 6.1 provides an
overview of the main 𝐵𝐵 trigger bits and low-multi CDCTRG bits with their associated
trigger conditions. A Bhabha veto is applied for some trigger bits to reject Bhabha
scattering 𝑒−𝑒+ → 𝑒−𝑒+ and detail condition in the same table.

Trigger bit Condition

CDCTRG 𝐵𝐵 bits (# CDC 2D track >=3 AND #CDC 3D track >=1) OR
(#CDC 2D track >=2 AND #CDC 3D track >=1

AND 𝜙 between 2 2D track >𝜋/2 And Bhabha veto)

ECLTRG 𝐵𝐵 bits (#ECL cluster 4 AND Bhabha veto ) OR
(ECL energy Sum 1 GeV AND Bhabha veto)

CDC low-multi bits* #CDC 2D track >=1 AND #CDC 3D track >=1 AND 𝑝 >0.7GeV

BhaBha veto
165◦ <

∑
𝜃CM < 190◦ AND 160◦ < Δ𝜙CM < 200◦

𝐸0
CM > 3GeV AND 𝐸1

CM > 3GeV AND
(𝐸0

CM > 4.5GeVOR𝐸1
CM > 4.5GeV)

*Here we only consider single track trigger case, which dominate the CDC low-multi bits

Table 6.1: Typical trigger bits and their corresponding condition.
∑
𝜃CM is the sum of

polar angles for two ECL clusters and Δ𝜙CM is the difference of azimuthal angles for
two ECL clusters. And 𝐸0,1

CM are the deposit energy of two ECL clusters. Injection veto
is applied for all bits.

The trigger rates for these bits in a physics run conducted at a luminosity of
4.5 × 1034, cm−2s−1 are presented in Table 6.3, in which a total level-1 trigger rate is
11.50 kHz. It is evident that the CDC trigger-related bits contribute significantly to the
overall level 1 trigger rate. In order to mitigate this issue, we have categorized the
components of CDCTRG bits within the same events, as outlined in Table 6.4. In this
table, we categorize events into three distinct types based on the presence of charged
tracks: signal events, off IP background events, and fake track background events,
which are defined in Table 6.2. Off-IP background events primarily originate from
beam background outside the interaction point (IP). On the other hand, fake track
events can arise from incorrect track reconstructions with electronics noise, CDC
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Signal Events #offline Tracks from IP(|𝑧offline
0 | <= 1cm)>=1

Fake Track Events #offline Tracks == 0
Off-IP Events #offline Tracks ≠ 0 AND #offline Tracks from IP == 0

Table 6.2: Definition of signal events Off-IP background events, and fake track
background events

cross-talk or beam-induced background. It is important to note that both fake track
and off IP background events contribute significantly to the overall background trigger
rate. Our primary objective is to optimize the level 1 CDC trigger by improve the
location resolution and reject more“Off IP Background events” while maintaining
the same level of efficiency. And if possible, with better 𝑧0 resolution, we can restrict
the 𝑧𝑁𝑁0 selection condition and reject more fake track background events.

Trigger bit CDCTRG 𝐵𝐵 bits ECLTRG 𝐵𝐵 bits CDC low-multi bits
Raw rate (kHz) 2.91 2.49 2.93

Exclusive rate (kHz) 2.91 1.80 1.37

Table 6.3: Trigger rate for each bit at luminosity of 4.5 × 1034𝑐𝑚−2𝑠−1. Each of the
events may fulfill more than one condition, thus we use“Exclusive rate” to show
the rate excluded events which already included in left trigger bits.

Trigger bit CDCTRG 𝐵𝐵 bits CDC low-multi bits
Signal Events rate (kHz) 0.76 1.02

Off IP Background rate (kHz) 1.36 1.04
Fake track Background rate (kHz) 0.79 0.87

Table 6.4: Raw trigger rate of different trigger components. Events with at least one
offline track from IP are categorized as“Signal event”; events with at least one track,
but none from IP are categorized as“Background events off IP” and events with no
offline track are categorized as“Fake track events"

6.2 level 1 CDC trigger workflow

level 1 CDC trigger workflow is illustrated in Fig. 6.1. The CDC Front-End Electronics
(FE) are responsible for providing the raw CDC hits with the precise drift time in
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resolution of 2 ns, which are then collected by the merger boards [35]. Each merger
board aggregates information from four FEs. Subsequently, the merger boards transmit
this information to a four-module pipeline. The first module, known as the Track
Segment Finder (TSF), utilizes the raw CDC hits from the merger boards to build
characteristic wire patterns which we called Track Segment in every SLs. This step
aims to reduce the data volume transmitted to the subsequent module. The second
module, referred to as the 2D Track Finder, constructs tracks in the transverse plane
by combining Track Segments from the axial SLs using a Hough transformation.
Simultaneously, the Event Time Finder module determines the event time in parallel
with the 2D Finder, allowing for the calculation of drift times to obtain precise spatial
information from the hits. Finally, the Neurotrigger module integrates the 2D track,
Track Segments in stereo SLs, and event timing to estimate the 3D track parameters.
This section provides an overview of the pipelined level 1 track trigger modules, which
take CDC hits as input and generate low-level tracking information for the GDL.

Figure 6.1: The first level track trigger modular pipeline. The implemented hardware
modules are showed below every entity.

6.2.1 Track Segments Finder

The TSF serves as the initial module in the level 1 track trigger pipeline. Its primary
function is to process the raw CDC hits patterns and timing information obtained from
the merger board and generate the Track Segments. The visual representation of
the Track Segment’s shape can be seen in Fig. 6.2. To construct a Track Segment, a
minimum requirement of four out of the five layers must contain hits. The selection
of the priority wire follows a predetermined order, starting with the first priority
location. If no hit is present, the selection proceeds to the second priority location. And
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because of the CDC wire position, as showed in Fig 2.12, a 𝜙 angle shift exists between
every two layers, we can determine the relative positioning of tracks and priority
wires by analyzing the hit pattern within each Track Segment, exemplified by Fig. 6.3.
Each Track Segment encompasses a pattern that corresponds to the existence of CDC
wire hits, TDC of the first/second priority wire with a resolution of 2 ns, left/right
directional data encoded with two bits, TDC for the fastest hit in a Track Segment with
a resolution of 2 ns, and timing data for other wires with a precision of 32 ns. The
Track Segments are used as a basic element for following procedure.

Figure 6.2: The shape of Track Segments. The yellow part is wires in the Track Segment
and the green part is the first/second prior wires of the Track Segment. Left for the
innermost SLs, where use 15 wires from outer 5 of 8 layers to form Track Segments.
Right for all the outer SLs, where using 11 wires from inner 5 of 6 layers to form Track
Segments.

Figure 6.3: The example of right, undetermined and left state of Track Segments.
Charged tracks are assuming from Track Segments pattern.
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6.2.2 2-dimensional Track Finder

After the TSF module, the axial SLs provide Track Segments which are then combined
to form circular tracks in the transverse plane using a technique called Hough
transformation. The Hough transformation is a widely used method in image processing
and pattern recognition, originally developed for detecting lines in an image. However,
it can also be extended to detect other shapes such as circles and curves.

In 2D track finder, the Hough transformation is applied to identify circular tracks
from the Track Segments. The transformation works by mapping points in the
geometric space to a parameter space with the equation:

𝜌 (𝜙) = 2
𝑟TS

sin(𝜙 − 𝜙TS) (6.1)

After the Track Segment Finder (TSF) module, the axial Super Layers (SLs) provide
Track Segments which are then combined to form circular tracks in the transverse
plane using a technique called Hough transformation. The Hough transformation is
expressed mathematically as:

𝜌 (𝜙) = 2
𝑟TS

sin(𝜙 − 𝜙TS) (6.2)

In this equation, (𝑟TS, 𝜙TS) represents the polar coordinates corresponding to the
priority wires of the Track Segments in the geometric space, while (𝜌, 𝜙) denote the
polar coordinates within the Hough parameter space. By applying this transformation,
a circle in the geometric space is mapped to two points in the Hough parameter space.
Similarly, a point in the geometric space appears as a sine curve in the Hough parameter
space. This can be visualized in Fig. 6.4, which illustrates the Hough transformation of
a circular track. The crossing points in the parameter space correspond to positive and
negative curvatures, indicating clockwise and counterclockwise tracks, respectively.
Each point is associated with a sine curve of the same color in the parameter space.

The process of identifying a specific circular track then converts into locating a
cross point within the Hough parameter space. This is achieved by implementing a
grid separation on the Hough parameter space. Each curve present in the parameter
space contributes a count to the corresponding grid cell, and curves originating from
each SL are counted only once per cell. Subsequently, cells exceeding a specified count
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Figure 6.4: Hough transformation of a circular track. There are two crossing points,
one for positive and one for negative curvature, where positive for clockwise track and
negative for counterclockwise. Each point is corresponding to the Sine curve with
same color in parameter space [18].

threshold are selected as the cross point which corresponding to 2D tracks in the
geometric space (Fig. 6.5 provides an illustrative example). The threshold value and
the number of cells are adjusted to optimize performance. The recent investigation
[36] has further developed an algorithm that utilizes all wires in the Track Segments,
as opposed to solely the priority wires, aiming to enhance efficiency and mitigate
background track rates. The 2D track finder module provides 2D tracks for subsequent
3D fitting procedures, while the transverse momentum (𝑝𝑇 ) and charge information of
the tracks can be derived from the 2D track finder.

6.2.3 Event Timing Finder

The Event Timing Finder (ETF), working parallel with 2D track finder, provides
the start time 𝑇0 of an event. The 𝑇0 is necessary for calculated drift time in CDC:
𝑇𝑑𝑟𝑖 𝑓 𝑡 = 𝑇𝑤𝑖𝑟𝑒 − 𝑇0. The main idea of ETF is to find out the fastest signal timing in
all Track Segment. But the problem is that Track Segments contaminates a large
amount of background which is not derived from events such as beam background and
crosstalk, whose hit timing is independent of event timing (see Fig. 6.6). So Current ETF
in [37] first apply a 2D track finder inside, to only select track segments related with a
2D track. Then in order to further suppress the influence of the residual background
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Figure 6.5: Left: Constructed curve and grid in the parameter space. Right: Histogram
for each grid cells counts [18].

hits, the ETF calculate a median value from the fastest timing of all the fastest timing
from Track Segments. ETF provide the 𝑇0 to follow 3D fitting.

6.2.4 3-dimensional track reconstruction modules

3D track reconstruction module get all the information include track segments, 2D
track and event time to reconstruct the 3D track and fit the 𝑧0 and 𝜃 of each track.

For the 3D reconstruction, the track of a charged particle in a uniform magnetic
field follows a helical shape, aligned with the axis of the magnetic field, as expressed by

©«
𝑥 (𝜇)
𝑦 (𝜇)
𝑧 (𝜇)

ª®®¬ =
©«
𝑟 · (sin (𝜇/𝑟 − 𝜙0) + sin𝜙0 + 𝑥0)
𝑟 · (cos (𝜇/𝑟 − 𝜙0) − cos𝜙0 + 𝑦0)

cot𝜃0 · 𝜇 + 𝑧0

ª®®¬ (6.3)

where 𝜇 ≡ 2𝛼𝑟 is the arc length of the transverse track projection from the reference
point to a general point on the helix and 𝛼 is the crossing angle of tracks with each SL.
(𝑥0, 𝑦0, 𝑧0) is the reference point on helix called pivot, 𝜙0 and 𝜃0are the azimuth and
polar angle of the momentum at the reference point. This helix is showed in Fig. 6.7.

From 2D track reconstruction, the 𝜙0 and 𝑟 can be determined. It is worth noting
that with the Hough transformation employed in the 2D finder, only tracks originating
from the origin ((𝑥0, 𝑦0) = (0, 0)) are selected. And the 𝑎𝑙𝑝ℎ𝑎 can also be calculated
with 2D tracks and each SL parameters. The only left unknown parameters are the 𝜃
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Figure 6.6: The hit timing distribution relative to offline reconstructed event timing.
The red lines are priority timing and the blue lines are the fastest timing. The solid and
dashed lines show before and after background reduction by association with 2D
track [37]

Figure 6.7: Left:The track in helix shape. Right: Track projection on x-y plane and the
related stereo wires [18]
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and 𝑧0, both of which are related to the stereo wires which are not parallel to z-axis
and need 3D reconstruction.

axial wirestereo wire

axial wire
track

y

x

z

Figure 6.8: The track and CDC wires in y-z plane. The hit points on the stereo wires
can be estimated from the 𝜙𝑐𝑟𝑜𝑠𝑠 and 𝑟𝑐𝑟𝑜𝑠𝑠 on x-y plane.[18]

As showed in Fig 6.8, assuming charged particle directly cross the stereo wires,
with determined stereo wires crossing point (𝑟𝑐𝑟𝑜𝑠𝑠, 𝜙𝑐𝑟𝑜𝑠𝑠) , we could calculate the 𝑧𝑐𝑟𝑜𝑠𝑠 .
Consider stereo wires’ radius 𝑟𝑐𝑟𝑜𝑠𝑠 are known, only 𝜙 of crossing point is enough for
determination. And it follows this equation:

𝑧𝑐𝑟𝑜𝑠𝑠 − 𝑧𝐵
𝑧𝐹 − 𝑧𝐵

=
𝜙𝑐𝑟𝑜𝑠𝑠 − 𝜙𝐵
𝜙𝐹 − 𝜙𝐵

(6.4)

where the index F/B denotes the forward/backward endplate and 𝑧𝐵, 𝑧𝐹 , 𝜙𝐵, 𝜙𝐹 are
constant specific to each stereo wire.

Taking into account the drift time, which represents the distance between the track
and the sensing wire (Fig. 6.9), we can calculate the hit position by incorporating the
drift time as follows:

𝜙ℎ𝑖𝑡 = 𝜙𝑐𝑟𝑜𝑠𝑠 ± arcsin(
𝑣𝑑𝑟𝑖 𝑓 𝑡 · 𝑡𝑑𝑟𝑖 𝑓 𝑡

𝑟𝑤𝑖𝑟𝑒
) ∼ 𝜙𝑐𝑟𝑜𝑠𝑠 ±

𝑣𝑑𝑟𝑖 𝑓 𝑡 · 𝑡𝑑𝑟𝑖 𝑓 𝑡
𝑟𝑤𝑖𝑟𝑒

(6.5)

𝑡𝑑𝑟𝑖 𝑓 𝑡 and 𝑣𝑑𝑟𝑖 𝑓 𝑡 are drift time and drift speed. We approximately take the 𝑟ℎ𝑖𝑡 == 𝑟𝑤𝑖𝑟𝑒
and 𝑣𝑑𝑟𝑖 𝑓 𝑡 · 𝑡𝑑𝑟𝑖 𝑓 𝑡 << 𝑟𝑤𝑖𝑟𝑒 .

By utilizing more than two crossing points from different stereo wires, we can
perform a fit to determine 𝑧0 and 𝜃0 in Equation 6.3. Furthermore, from Fig. 6.7, it is



6.3 3D Neural-Network trigger 67

r

ϕ

α

(a) only drift time (b) left/right known (c) crossing angle

Figure 6.9: Determined position of track hit point (in cyan line) related with stereo
wires. Left: only know drift time. Middle: know drift time and left/right state. Right:
know drift time, left/right state and crossing angle [18]

obviously that 𝜙𝑐𝑟𝑜𝑠𝑠 can be calculated using the 2D parameters:

𝜙𝑐𝑟𝑜𝑠𝑠 = 𝜙0 − 𝛼 (6.6)

The 3D reconstruction process involves two parallel modules: the 3D neural network
and the 3D fitter. Our work primarily focuses on the 3D neural network approach.
After 3D reconstruction, the 𝑧0 and 𝜃0 will be provided to GRL and GDL.

6.2.5 Software simulation

As previously mentioned, the level 1 trigger system is implemented on dedicated
hardware. However, in order to facilitate investigations into the trigger performance,
software simulations of the trigger have also been incorporated within the Belle II
analysis software framework, known as basf2 [38]. The present study is based on the
software simulation of the trigger.

6.3 3D Neural-Network trigger

6.3.1 Current Hardware implemented

For the 3D track reconstruction in the level 1 trigger, a neural-network (NN) methodol-
ogy called NeuroTrigger was employed. As indicated in section 6.1.4, the variables
required for fitting 𝑧0 include 𝜙𝑐𝑟𝑜𝑠𝑠 , 𝑡𝑑𝑟𝑖 𝑓 𝑡 , and the left/right (L/R) state obtained from
the stereo wires, as well as 𝛼 from the 2D track. The constants such as 𝑟𝑤𝑖𝑟𝑒 , 𝑧𝐵 , 𝑧𝐹 , 𝜙𝐵 ,
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𝜙𝐹 , and 𝑣𝑑𝑟𝑖 𝑓 𝑡 are not directly inputted, as the neural network is designed to learn and
incorporate them internally. Pytorch lib [39] is used for neural network training.

NeuroTrigger input

In the actual implementation, the variable 𝜙𝑟𝑒𝑙 = 𝜙𝑐𝑟𝑜𝑠𝑠 − 𝜙𝐵 is utilized instead of
𝜙𝑐𝑟𝑜𝑠𝑠 to facilitate the learning process. Additionally, for 𝑡0, the fastest timing among
all priority wires is employed instead of relying on the ETF output. And 𝑡𝑑𝑟𝑖 𝑓 𝑡 are
combined with L/R state where Left for positive, Right for negative and undecided
for zero drift time (assuming track is close to wire). For the selection of input Hits,
following criteria are applied:

1. 𝜙𝑟𝑒𝑙 in the range of (𝜙𝑚𝑖𝑛, 𝜙𝑚𝑎𝑥 ), which is pre-trained with the offline data to
limit the maximum 𝜙 range between the 2D track and stereo wire.

2. 𝑡𝑑𝑟𝑖 𝑓 𝑡 ∈ (0, 503ns), priority wire with negative drift time are rejected.

Since the architecture of NN is determined, and we may have multi Track Segment in
each SL, only one per every SLs are selected out. First it finds the Track Segment with
L/R state decided. If found, then pick up fastest one with smallest 𝑡𝑑𝑟𝑖 𝑓 𝑡 . If no, pick
up the fastest one in all Track Segment in this SL. All input are scaled to (−1, 1) for
convenient training.

NeuroTrigger architecture

The parameters of the selected wires are input to the NeuroTrigger. Because of possible
missing hits in each SL, a combination of 5 different NN are used to handle a different
missing SL case (One for all SLs valid, and 4 for each SL missing case). Meanwhile, a
3D track will only build with at least 3 out of 4 stereo SLs have hits. Such single NN are
called“expert”. The current architecture of every expert of NeuroTrigger is depicted
in Fig. 6.10, which consist of an input layer with 27 nodes, a hidden layer with 81
nodes, and an output layer with 2 nodes. Two output for 𝑧0 and 𝜃0. All layers are fully
connected.
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Figure 6.10: Architecture for implemented neural-network. It has one input layer of 27
nodes, consists of 𝜙𝑟𝑒𝑙 , 𝑡𝑑𝑟𝑖 𝑓 𝑡 (include L/R) and 𝛼 per every SL, One hidden layer with 81
nodes and one output layer of two nodes for 𝑧0 and 𝜃 [18].

Neural network training

The NN undergoes a training process to adjust its internal weights in order to capture
the relationship between the input and output. The training process generally involves
a sequence of forward and backward propagation steps. Let’s consider a complete
propagation process for an input vector with n samples consisting of𝑚1 input features
and corresponding𝑚2 target features:

𝑋 𝑖𝑛 =

©«
𝑥11 𝑥12 ... 𝑥1𝑚1

𝑥21 𝑥22 ... 𝑥2𝑚1

...

𝑥𝑛1 𝑥𝑛2 ... 𝑥𝑛𝑚1

ª®®®®®¬
, 𝑌 𝑖𝑛 =

©«
𝑦11 𝑦12 ... 𝑦1𝑚2

𝑦21 𝑦22 ... 𝑦2𝑚2

...

𝑦𝑛1 𝑦𝑛2 ... 𝑦𝑛𝑚2

ª®®®®®¬
(6.7)

In the forward step, we process each sample of 𝑋 into NN and propagate to each node
in NN as:

𝑁𝑖𝑘 = 𝐴(
𝑗∑︁
𝑤 𝑗𝑘 · 𝑥𝑖 𝑗 + 𝑏𝑘) (6.8)

where i represent sample number, k represent the node number in next layers
and j represent the node number in this layer; 𝑤 𝑗𝑘 and 𝑏 𝑗𝑘 are the elements of
weights matrix and bias matrix, respectively, which are stored in the NN and updated
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iteratively. A nonlinear activation function 𝐴() applied to introduces nonlinearity into
the propagation. The forward propagation is performed layer by layer until reaching
the output layer. Once the output 𝑌𝑜𝑢𝑡 is obtained, it is compared to the target value to
calculate the loss matrix:

𝐿𝑖 =

𝑗∑︁
𝐸 (𝑦𝑖𝑛𝑖 𝑗 , 𝑦𝑜𝑢𝑡𝑖 𝑗 ) (6.9)

𝐿𝑖 is the elements of Loss matrix; 𝐸 () is the loss function which can be adjusted
based on the desired target. In common case we could use mean-square error (MSE) as
𝐸 (𝑦𝑖𝑛𝑖 𝑗 , 𝑦𝑜𝑢𝑡𝑖 𝑗 ) = (𝑦𝑖𝑛𝑖 𝑗 − 𝑦𝑜𝑢𝑡𝑖 𝑗 )2.

Subsequently, the loss is backpropagated to adjust the weights and bias matrices in
each layer:

Δ𝑤𝑖 𝑗𝑘 = 𝑙𝑟 ·𝑂 ( 𝜕𝐿𝑖
𝜕𝑤 𝑗𝑘

) (6.10)

where 𝑙𝑟 is the learning rate determined the speed they learn from every sample
and 𝑂 is the optimization algorithms which can be adjusted. Notably, the weights𝑤 𝑗𝑘

are either updated by accumulating and summing the Δ𝑤𝑖 𝑗𝑘 over 𝑖 from a few samples
(referred to as a“batch”), updating them with every sample, or updating them
after processing all the samples, based on the chosen training strategy. Once all input
samples have been traversed and the𝑤 𝑗𝑘 have been updated, one epoch of training is
completed. Through the forward and backward propagation steps, the NN’s output
gradually approaches the target. The number of epochs required for convergence
depends on the learning rate and can range from a few tens to a few thousands.

It should be noticed that with a multi-layer NN, 𝜕𝐿𝑖
𝜕𝑤 𝑗𝑘

is calculated from chain
derivation method as 𝜕𝐿𝑖

𝜕𝑤 𝑗𝑘
=

𝜕𝐿𝑖
𝜕𝑓0

𝜕𝑓0
𝜕𝑓1
...

𝜕𝑓𝑛
𝜕𝑤 𝑗𝑘

. Then a problem called vanishing gradient
may occur. If 𝜕𝑓𝑛−1

𝜕𝑓𝑛
got a small or zero value, the following gradient will be close to zero

and can hardly update. It is important to choose suitable activate function to reduce
this effect.

To prevent overfitting to the training samples, a validation sample is essential.
By comparing the loss obtained from the validation sample, one can determine if
overfitting is occurring and if the results worsen for the validation sample. In such
cases, the training process can be appropriately halted.

In the current implementation of the Neurotrigger, the MSE loss function is
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employed. 𝑂
(
𝜕𝐿𝑖
𝜕𝑤 𝑗𝑘

)
= Δ𝑖 𝑗𝑘

𝜕𝐿𝑖
𝜕𝑤 𝑗𝑘

, where Δ𝑖 𝑗𝑘 depends on the sign of 𝜕𝐿𝑖
𝜕𝑤𝑖 𝑗𝑘

and 𝜕𝐿𝑖−1
𝜕𝑤 (𝑖−1) 𝑗𝑘

.
And the weights and bias matrices are updated after processing every 2024 input
samples. Offline reconstructed track from real physics data was utilized for NN training.

6.3.2 Firmware logic

The Universal Trigger board serves as a versatile FPGA board for the trigger system,
providing a platform for implementing advanced and high-performance logic. Current
trigger logics mainly deployed on the three generation Universal Trigger board (UT3)
and part on fourth generation UT (UT4). As part of an upgrade to enhance the
capabilities and performance of the L1 trigger system, the hardware transition will be
made from three generation UT (UT3) to fourth generation UT (UT4). A detailed
comparison between UT3 and UT4 is presented in Table 6.5. The UT4 board offers
more than three times the number of logic gates and a communication bandwidth
that is twice as large as that of UT3. These improvements enable the utilization of
larger Neural-Network architectures and facilitate the transfer of additional inputs,
contributing to enhanced functionality and performance.

UT3 UT4
FPGA Virtex 6 XC6VHX380/565T Virtex UltraScale 7 XCVU080/160

Logic gate 382k/580k 975k/2026k
Optical IO bandwidth (total) 530Gbps 1300Gbps
Internal independent RAM No DDR432GiB

Table 6.5: UT4 and UT3 comparison

The CDC trigger logics discussed above have been implemented on the UT3
FPGA already. Here we focus on the FPGA implementation of Neurotrigger[40]. The
architecture of the Neurotrigger FPGA implementation is illustrated in Figure 6.11. This
implementation comprises three stages. The first stage is responsible for input handling,
where data from the ETF, TSF, and 2D Track Finder within the CDC trigger system is
received and processed. The second stage, known as preprocessing, incorporates
various processing modules that perform different tasks. These tasks include hit
selection to identify stereo and axial Track Segments, calculation of 𝛼 and 𝜙𝑟𝑒𝑙 , and
scaling all parameters. These additionally show the data flow related dependencies in
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𝛼 𝜙𝑟𝑒𝑙 𝑡𝑑𝑟𝑖 𝑓 𝑡 Scaled Input MLP Weights
assigned bits 14 24 8 13 13

Table 6.6: Bandwidth for 𝛼 ,𝜙𝑟𝑒𝑙 𝑡𝑑𝑟𝑖 𝑓 𝑡 and Scaled Input[40]

processing. Modules without a data dependence are operating in parallel and data is
synchronized to compensate for different delays at the respective stages. And in the
final stage, processing, the scaled parameters are fed them into the trained Multi-Layer
Perceptron (MLP) network. This processing step yields the desired outputs of 𝑧0 and 𝜃0.
The length of assigned bits for every parameter are showed in Tab. 6.6.

α  CALCU- 
-LATE

φrel CALC-
-ULATE

Figure 6.11: The architecture of the FPGA implementation of Neurotrigger [40]. It is
divided into three stages. The input handling that receives the data from the ETF, TSF
and 2D Track Finder within the CDC trigger system. The preprocessing is represented
by the different processing modules used within the design, including hit selection to
select stereo and axial Track Segment, 𝛼 and 𝜙𝑟𝑒𝑙 calculate and input scaling. And
in the final stage, processing, the scaled parameters are fed them into the trained
Multi-Layer Perceptron (MLP) network. This processing step yields the desired outputs
of 𝑧0 and 𝜃0.
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6.3.3 Performance of Neurotrigger

The Neurotrigger produces reconstructed 3D tracks with the variables 𝑧0 and 𝜃0,
which are subsequently processed by the GRL and GDL to make the final decision. To
discriminate against events originating from sources other than the IP, a 𝑧0 selection
condition as |𝑧0 | < 15cmis implemented to select 3D tracks after the Neurotrigger. In
this regard, we present the comparison between 𝑧NN

0 , the output from the NN, and
𝑧offline

0 , which represents the precise 𝑧0 obtained through offline analysis with data
taking during the 2022 physics run. The current Neurotrigger 𝑧0 resolution for signal
tracks originating from the IP (|𝑧offline

0 | < 1, cm) [41] is illustrated in Fig.6.12. A double
Gaussian fitting is applied. Since we want to keep 95% signal efficiency, we also focus
on the 𝜎95 which represent the standard deviation of central 95% events and directly
related to the selection condition we could set. For current Neurotrigger, 𝜎95 = 3.05.
However, the current Neurotrigger still faces a significant challenge. As depicted in
Fig.6.13, a considerable number of off-IP events fall within the selection region defined
by |𝑧NN

0 | < 15cm, which is what we use in actual data taking, resulting in a substantial
increase in the level 1 CDC trigger rate. It is of utmost importance to mitigate this "Off
IP background" originating from the Neurotrigger. And we list the target for our
developed new NN trigger as Tab. 6.7, in which we plan to reduce the 𝜎95 of both
IP track and Off-IP tracks by 1 cm and reject further 70% background events which
were triggered by current Neurotrigger, while keep same efficiency. Considering a
same total trigger rate at 11.5 kHz, we aim to reduce the background CDCTRG 𝐵𝐵 raw
trigger rate by 1.1 kHz and background CDCTRG low-multi trigger rate by0.9 kHz.

Parameters Target
𝑧0 resolution at IP (𝜎 𝐼𝑃95 <2 cm

Trigger efficiency >95%
Extra background rejection rate >50%

Reduction for CDCTRG 𝐵𝐵 raw trigger rate* >1.1 kHz
Reduction for CDCTRG low-multi raw trigger rate* >0.9 kHz
*Assuming same total trigger rate and ratio as we showed in Table 6.3,6.4

Table 6.7: Target of new developed NN trigger. Extra background rejection rate is the
rejection rate for the background events that pass Neurotrigger selection.
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Figure 6.12: Δ𝑧0 ≡ 𝑧NN
0 − 𝑧offline

0 distribution at |𝑧offline
0 | < 1 region (IP). Using double

Gaussian fit to evaluate the resolution. Data taking from 2022 physics run [41].

Figure 6.13: 𝑧NN
0 comparing with 𝑧offline

0 . Selection condition of Neurotrigger track are
set at 15/20 cm for multi-track and single track events. Large amount of events with
|𝑧offline

0 | > 15𝑐𝑚 drop into the Selection region. Data taking from 2022 physics run. [41].
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7
Development of Neural-Network 3D

track trigger

This chapter presents the strategy employed to develop the novel Neurotrigger with
the primary objective to reduce resolution by 1 cm and to improve the total background
rejection rate further by 50%. This chapter encompasses two aspects: additional inputs,
and optimization of the Neural-Network architecture.

7.1 Extra input information

This section presents the supplementary data utilized to enhance the performance of
the Neurotrigger in conjunction with the UT4 board. The additional information is
categorized into three distinct components: Extra wires, ADC information, and ETF
input.
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7.1.1 Extra wires information

Ageneral approach to enhance the fitting performance involves incorporating additional
data points for the fitting process. With the introduction of the UT4 board, it becomes
feasible to accurately transfer timing information from extra wires to the Neurotrigger,
achieving a precision of 2 ns. As depicted in Fig. 7.1, the current implementation only
utilizes the priority wire within each Track Segment. In this, we include hits other than
the priority one, in the same Track Segment (extra wires) as extra input feature of the
fitting process. One challenge we encounter is the need for deterministic NN inputs,
which is crucial for hardware implementation. The number of hits in a Track Segment
varies from event to event, posing a hindrance to achieving a fixed number of inputs.
Additionally, the presence of potential invalid inputs corresponding to wires with no
hits can significantly impair the performance of the existing fully connected NN [18].
To address these challenges, we propose two strategies for incorporating the extra
wires:“Selected extra wires input” and“Full wire input with partial connect NN”.

Wires hit in a TS  -- Plan to add 

Priority wires   -- Already used

Track segment

Figure 7.1: The input CDC hits for Neurotrigger, red dots for already used and yellow
dots for we plan to added

Selected extra wires input

It is natural to select only the hit wires as input to avoid the issue of missing input
features. To ensure a valid input, considering that a Track Segment should have at
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least 4 out of 5 layers hit, we can guarantee a minimum of 3 valid extra wires for
the Neurotrigger. Since the relative location of each input wire is not determined in
relation to the priority wire, it is necessary to include 𝜙𝑟𝑒𝑙 and 𝛼 as input along with
𝑡𝑑𝑟𝑖 𝑓 𝑡 for the extra wires.

The remaining challenge lies in determining the L/R state. The Track Segment can
only provide the L/R state for the priority wires. To address this, we construct a full
L/R Look-Up Table (LUT) that maps the L/R state for every wire in the Track Segment
based on the Track Segment hit pattern. The mapping from hit pattern to L/R state is
determined through Monte Carlo (MC) simulated tracks. For each hit in the track
segment, the hit pattern and the true L/R state for every wire are determined in the
simulation. Subsequently, for each pattern, the number of hits with the true left (right)
passage, denoted as 𝑛𝐿 (𝑛𝑅), are counted for each wire. To determine the left/right state
for the pattern, the following condition is checked:

Left/Right state =


Left 𝑖 𝑓 𝑛𝐿 > 𝑝 · (𝑛𝐿 + 𝑛𝑅) + 3𝜎

Right 𝑖 𝑓 𝑛𝑅 > 𝑝 · (𝑛𝐿 + 𝑛𝑅) + 3𝜎

Undecided otherwise

(7.1)

Here, 𝜎 =
√︁
(𝑛𝐿 + 𝑛𝑅) · 𝑝 · (1 − 𝑝) represents the width of a binomial distribution,

and 𝑝 is the probability of the binomial distribution, with the assumption that the
L/R state follow the binomial distribution. 𝑝 is adjustable for different here. Fig. 7.2
illustrates an example of the Track Segment hit pattern and the corresponding L/R
state. However, it should be noted that the shape of the Track Segment may not be
suitable for determining the L/R state of certain wires. Fig. 7.3 demonstrates the rate of
undetermined L/R state for different wires. The Wires with number 0,2,8, and 9 which
are at edge of a Track Segment, can hardly determine L/R only from the Track Segment
pattern with more than 80% undecided rate.

Considering in real physics events, a certain hit may not be related to signal but
from background, which is neither left pass nor right pass. Thus, the 𝑛𝐵 are used
to mark hits from background. And an extra equation was introduced to separate
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Figure 7.2: Example of Track Segment with specific hit pattern (left) and corresponding
𝑛𝐿 and 𝑛𝑅 ratio for each wire. For this pattern, Wire 3 and wire 8 are determined left
state, while wire 5 and wire 9 as right state. Others are set as undecided state.
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Figure 7.3: The undecided rate of all wires in Track Segment with 𝑝 = 0.7. Wire 0,2,8,9,
with undecided rate > 80% can hardly provide correct L/R state for input.
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background like pattern:

Left/Right state =
{
Signal 𝑖 𝑓 𝑛𝐿 + 𝑛𝑅 > (1 − 𝑏) · (𝑛𝐿 + 𝑛𝑅 + 𝑛𝐵) + 3𝜎

Undecided otherwise
(7.2)

Here the 𝑏 can be adjusted to reach a balance of signal efficiency and background
reject rate.

We use the Monte Carlo (MC) simulation to generate 100k single charge muon
tracks events for LUT training. Each event was mixed with Belle II early phase 3
background. Additional 20k events are generated for test.

Full L/R LUT has been trained and evaluated with 𝑏 cut ranged from 0.4 to 0.99 and
𝑝 from 0.5 to 0.99. Every hit have three real state in MC: background hit, right pass and
left pass, the later two are signal hits. And every hit also have three predict state,
undecided, left pass and right pass. We assign“undecided” for background like hits
and give it low priority in hits selections. For the signal hits evaluation, we focus on the
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐿/𝑅 𝑅𝑎𝑡𝑒 = #𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐿/𝑅 ℎ𝑖𝑡𝑠

#𝑇𝑜𝑡𝑎𝑙 𝑆𝑖𝑔𝑛𝑎𝑙 ℎ𝑖𝑡𝑠 and the𝑈𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑 𝑅𝑎𝑡𝑒 =
#𝑈𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑 𝑆𝑖𝑔𝑛𝑎𝑙 𝐻𝑖𝑡𝑠

#𝑇𝑜𝑡𝑎𝑙 𝑆𝑖𝑔𝑛𝑎𝑙 ℎ𝑖𝑡𝑠 . High
correct rate and low undecided rate are preferred. For Background hit, we focus on the
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑟𝑎𝑡𝑒 =

#𝑈𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 ℎ𝑖𝑡𝑠
#𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 ℎ𝑖𝑡𝑠 . Fig. 7.4 show these three parame-

ters comparing with 𝑝 and 𝑏. We could tell from this figure that 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐿/𝑅 𝑅𝑎𝑡𝑒 does
not depend on the 𝑏 but depends on 𝑝 . 𝑈𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑 𝑅𝑎𝑡𝑒 and 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑅𝑎𝑡𝑒
are influenced by both 𝑝 and 𝑏. To get high 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐿/𝑅 𝑅𝑎𝑡𝑒 with relative low
𝑈𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑 𝑅𝑎𝑡𝑒 , we use 𝑝 = 0.7 and 𝑏 = 0.9 for following train sample generation. A
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐿/𝑅 𝑅𝑎𝑡𝑒 = 91.8% and𝑈𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑 𝑅𝑎𝑡𝑒 = 59.2% are expected. Considering at
least 4 wires in one Track Segments, we have 80.5% probability to obtain at least one
extra wires with correct decided L/R state. Considering the 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐿/𝑅 𝑅𝑎𝑡𝑒 = 91.8%,
we prefer to say it can be approximated as binomial distribution.

Another approach is to treat the 3D track reconstruction as a fitting process that
aims to find a helix track minimizing the distance between the track and the circles
which center of the wires and with a radius of 𝑡𝑑𝑟𝑖 𝑓 𝑡 × 𝑣𝑑𝑟𝑖 𝑓 𝑡 in the plane perpendicular
to the wire (see Fig. 7.5). By providing the complete set of 𝜙𝑟𝑒𝑙 , 𝛼 , and 𝑡𝑑𝑟𝑖 𝑓 𝑡 as inputs
for multiple wires in the Track Segment, it becomes feasible to reconstruct the track
without explicitly determining the L/R state. This can be achieved by employing a deep
neural network structure.
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Figure 7.4: Upper Left: 𝑈𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑 𝑅𝑎𝑡𝑒 compares with 𝑏 and 𝑝 . Upper Right:
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐿/𝑅 𝑅𝑎𝑡𝑒 compares with 𝑏 and 𝑝 . Lower Left: 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑅𝑎𝑡𝑒
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Figure 7.5: schematic diagram for a 3D track reconstruction with full wire information
in a Track Segment. A linear approximation of the track is make in this figure.
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Full wire input

As previously mentioned, the main challenge with the full wire input approach is
the mismatch between the deterministic nature of the neural network (NN) and the
variability of the signal wire. However, it is possible to address this issue by leaving
input space for every wires no matter if it has signal which converts it as a missing
data problem. In the case of our problem, the missing data can be classified as Missing
Not At Random (MNAR) [42], which means that the missing values are related to the
reasons for their absence and can be well modeled. We propose using a neural network
approach to model the missing data, allowing us to directly input all the 𝑡𝑑𝑟𝑖 𝑓 𝑡 values
into the NN. In this case, since the relative location is constant for each input node,
additional location inputs such as 𝜙𝑟𝑒𝑙 and 𝛼 , as well as the L/R state, are not necessary.
Therefore, the positive 𝑡𝑑𝑟𝑖 𝑓 𝑡 values are scaled to the range (0, 1), while the no signal
case we input -1. The specific model we employed is described in Section 7.3.

7.1.2 ADC information

It is feasible to include an additional bit for the ADC of each wire within the Track
Segment in order to reject background noise from electronics and low energy gamma
with low charge. Considering the CDCEF bandwidth only one bit for every wire is
available currently. Thus, our preference is to transmit a boolean value indicating
whether the ADC value crosses a certain threshold.

Fig. 7.6 illustrates the significant discrepancy in ADC values between signal
and background events in the 𝐴𝐷𝐶 < 20 region. In the 2022 physics run, events
characterized by a substantial background composition resulted in approximately 10%
of false track reconstructions [41], thereby affecting the hit selection process of the
Neurotrigger. By incorporating the ADC input, it becomes possible to enhance the
optimization of the Neurotrigger by refining the selection process.

Given that all inputs in the CDC Trigger pipeline operate at the Track Segment
level, our intention is to extend the optimization efforts to this level as well. By utilizing
the one-bit ADC information, it becomes possible to generate a hit pattern at the Track
Segment level by applying an ADC threshold, as depicted in Fig. 7.7. To facilitate the
rejection of background-like Track Segments, we have developed a LUT based on the
hit ADC pattern, which has been trained using real physics events. In this process,
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Figure 7.6: ADC Distribution for Signal and Background events. A significant deviation
occurred at 𝐴𝐷𝐶 < 20 region [43]

each Track Segment is labeled as either“signal” if it is used in any offline track
reconstruction or“background” if it has not been utilized. The Track Segments are
then categorized according to their hit ADC patterns. Subsequently, the number of
background Track Segments, denoted as 𝑛𝑏 , and the number of signal Track Segments,
denoted as 𝑛𝑠 , are tallied for each hit ADC pattern. To determine the background/signal
classification for a particular pattern, the following condition is examined:

Background/Signal state =
{
Background 𝑖 𝑓 𝑛𝑏 > 𝑝 · (𝑛𝑏 + 𝑛𝑠) + 3𝜎

Signal otherwise
(7.3)

where 𝜎 =
√︁
(𝑛𝑏 + 𝑛𝑠) · 𝑝 · (1 − 𝑝) represents the width of a binomial distribution.

The parameter 𝑝 is optimized to achieve the optimal balance between efficiency and
rejection rate. Figure 7.8 illustrates a typical example of this classification process.

However, it should be noted that even for background state patterns, there
might still be some signal events present. In order to avoid any potential loss in
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efficiency, we prioritize the signal state patterns during the hit selection stage rather
than directly rejecting the background state patterns. This allows us to focus on
capturing the desired signal events while minimizing the risk of excluding any
potential signal candidates . To train the Hit ADC pattern, 100,000 tracks from
the 2022 Belle II physics run data are used, and the validation is performed with
an extra 30,000 tracks. We use the Hit ADC pattern LUT has been trained and
evaluated with ADC threshold ranged from 5 mV to 40 mV and 𝑝 ranged from 0.5
to 0.95. We focus on the 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑟𝑒 𝑗𝑒𝑐𝑡 𝑟𝑎𝑡𝑒 = #𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑎𝑐𝑘 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠

#𝑇𝑜𝑡𝑎𝑙 𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑎𝑐𝑘 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠 and
𝑠𝑖𝑔𝑛𝑎𝑙 𝑒 𝑓 𝑓 𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =

#𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑆𝑖𝑔𝑛𝑎𝑙 𝑇𝑟𝑎𝑐𝑘 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠
#𝑇𝑜𝑡𝑎𝑙 𝑆𝑖𝑔𝑛𝑎𝑙 𝑇𝑟𝑎𝑐𝑘 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠 . Fig. 7.9 shows the evaluation result. It

clearly that with increasing 𝑝 , we could obtain better signal track segment efficiency
while reduce the background track segment reject rate. As for 𝐴𝐷𝐶 𝐶𝑈𝑡 , there is
the best value at 15 mV or 20 mV, which is consistent with the ADC distribution in
Fig. 7.6.To keep best signal efficiency, we choose 𝐴𝐷𝐶 𝐶𝑢𝑡 = 15 and 𝑝 = 0.95, where we
could obtain 97.7% signal track segment while reject 83.7% background track segments.
These values are applied for DNN training sample generalization. It should be noticed
that 𝐴𝐷𝐶 𝐶𝑢𝑡 = 20 is also preferred with same level efficiency.
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Figure 7.9: Left: The background track segments reject rate with different ADC cut and
𝑝 value. Right: The signal track segments efficiency with different ADC cut and 𝑝 value
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7.1.3 Event timing finder input

In the current Neurotrigger implementation, a “Fastest Priority” 𝑡0 is utilized
instead of the Event Timing Finder (ETF) 𝑡0 to determine the 𝑡𝑑𝑟𝑖 𝑓 𝑡 . However, with the
availability of the newly implemented ETF module [37], we plan to transition to using
the ETF 𝑡0 output instead. The comparison between the ETF 𝑡0 and Fastest Priority 𝑡0 is
illustrated in Fig. 7.10. The ETF module offers a 𝑡0 resolution of 10 ns and helps reduce
the possibility of obtaining 𝑡0 values from background hits, which is the main negative
part in Figure 7.10.

FP - Event T0 (ns)

ETF - Event T0 (ns)

Δ𝑡 (𝑛𝑠)

Figure 7.10: Δ𝑡 ≡ 𝑡ETF(FastestPriority)
0 − 𝑡Events

0 distribution. 𝑡𝐸𝑣𝑒𝑛𝑡𝑠0 was got from offline
reconstruction. ETFmodule has 𝑡0 resolution of 10 ns, which is a two factor improvement
of Fastest Priority.

Incorporating the ETF timing introduces a potential issue where the ETF 𝑡0 may
not always be smaller than the 𝑡ℎ𝑖𝑡 values from the CDC wires, resulting in negative
𝑡𝑑𝑟𝑖 𝑓 𝑡 values. To address this, we implement the following approach. First, taking into
account the resolution of 10 ns, we assign low priority to wires with 𝑡𝑑𝑟𝑖 𝑓 𝑡 < −10 ns.
Then, we enforce that all negative drift times are set to zero. This ensures that the 𝑡𝑑𝑟𝑖 𝑓 𝑡
values remain non-negative and helps mitigate the problem arising from negative drift
times.



86 Chapter 7. Development of Neural-Network 3D track trigger

Parameter Number of input feature Assigned bits in FPGA
Original Input feature
𝜙rel for priority wire 9 9 × 13
𝛼 for priority wire 9 9 × 13
𝑡drift for priority wire 9 9 × 13
New Input feature

extra 𝜙rel for selected wires 9/18/27 9/18/27 × 13
extra 𝛼 for selected wires 9/18/27 9/18/27 × 13

extra 𝑡drift for selected wires 9/18/27 9/18/27 × 13
Total Input features 54/81/108 9/18/27 × 13

Table 7.1: Input features for Selected extra wires input. The number of new input
features depends on the number of extra wire(s) we use, 9/18/27 for 1/2/3 extra wire(s)
case.

7.1.4 Summary of extra input features

As described above, the inclusion of extra wires from Track Segments is implemented
using two strategies:“Selected extra wires input” and“Full wires input”. ADC
boolean are included to help hit selection, and ETF 𝑡0 are used to improve 𝑡𝑑𝑟𝑖 𝑓 𝑡
resolution. The complete set of new input features is outlined as follows.

Selected extra wires input

The inputs are defined as Table 7.1:
A total of nine SLs are considered, consisting of five axial SLs and four stereo SLs.

The axial SLs are directly obtained from the 2D track found by the 2D track finder. The
selection of stereo Track Segments is restricted to the relevant range mentioned in
Section 6.3.1. In the case where no Track Segment falls within the relevant range, no
hit is used, and a value of 0 is inputted to the NN. Subsequently, the Track Segments
are selected following a priority order, as follows:

1. ADC state as a signal (if ADC cut is applied)

2. 𝑡𝑑𝑟𝑖 𝑓 𝑡 > −10 ns

3. Determination of the L/R state

4. Fastest positive 𝑡𝑑𝑟𝑖 𝑓 𝑡
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Parameter Number of input feature Assigned bits in FPGA

Original Input feature
𝜙rel for priority wire 9 9 × 13
𝛼 for priority wire 9 9 × 13
𝑡drift for priority wire 9 9 × 13
New Input feature

extra 𝑡𝑑𝑟𝑖 𝑓 𝑡 for all wires 99 99 × 13
Total Input features 126 126 × 13

Table 7.2: Input features for Full wires input input.

The Track Segment with the highest priority is selected, and the 𝜙𝑟𝑒𝑙 , 𝛼 , and 𝑡𝑑𝑟𝑖 𝑓 𝑡
values of its priority wire are used as input for the NN.

For the selection of extra wires, the priority order is as follows:

1. 𝑡𝑑𝑟𝑖 𝑓 𝑡 > −10 ns

2. Determination of the L/R state (if L/R is used)

3. Fastest non-negative 𝑡𝑑𝑟𝑖 𝑓 𝑡

The top three extra wires with the highest priority are selected. Depending on the
input nodes of the NN, either one, two, or three extra wires’ 𝜙𝑟𝑒𝑙 , 𝛼 , and 𝑡𝑑𝑟𝑖 𝑓 𝑡 values
are inputted to the NN. In this mode, the NN has a total of 54/81/108 input nodes for
the cases of 1/2/3 extra wires, respectively.

Full wires input

the inputs are defined as Tab. 7.2:
The Track Segment selection follows the same rules as described earlier. No

selection condition is applied for 𝑒𝑥𝑡𝑟𝑎 − 𝑡𝑑𝑟𝑖 𝑓 𝑡 since all values are inputted. The timing
of priority wires are included twice since we want to keep the origin input. In the case
of SL 0, which has 15 wires, only the first 11 wires are included as inputs.

A total of 126 input nodes are used for the NN in this mode.
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7.2 Neural-Network optimization

With the introduction of UT4, the architecture of the NN can be expanded and optimized.
This section presents the optimization methods from three aspects: architecture
modification and training optimization algorithm tuning and parameter tuning.

7.2.1 Architecture modification

In the previous architecture, which consisted of a single hidden layer NN or multi-
layer perceptron (MLP) with fully connected nodes, the model can be viewed as a
mathematical function that maps input values to output values. This type of architecture
is suitable for well-defined fitting problems. However, it requires careful feature
engineering prior to training [44], as we did previously by selecting the best signal-like
inputs to minimize the impact of background noise. The single hidden layer structure
has limitations in performing complex feature engineering on its own. Consequently,
as the number of background hits increases, the performance of this architecture tends
to deteriorate. Furthermore, considering our large dataset, which comprises more
than 1 million events, a simple MLP structure with only approximately 2000 free
parameters may not fully capture the intricate structures within the dataset. This
limitation prompted us to explore the application of deep learning (DL) methods.

Multi hidden layers and deep learning

In contrast to MLPs, recent research [44, 45] has demonstrated that deep neural
networks (DNNs) have the capability to extract features internally within the network
itself, as depicted in Fig. 7.11. This ability presents a promising opportunity to process
enriched inputs using DNN architectures. However, a significant challenge arises from
hardware limitations. The current Neurotrigger implementation reveals that even a
single MLP in the UT3 module incurs a latency of approximately 300 ns and utilizes
around 44% of the DSP resources[40], which dominated the resource’s usage of UT3
FPGA. Therefore, considering the new neural network architecture on UT4, 1 hidden
layer with 300 nodes or 3 hidden layers with 81 nodes can certainly be implemented,
thus we set a restriction of three hidden layers and 300 nodes per layer for best NN
searching.
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Figure 7.11: Process of analytical model building[44]

We begin with a simple case of adding more hidden layers and adjusting the
number of nodes in each layer. The optimization ranges for the number of nodes are
set between 20 and 300, while the number of hidden layers can vary from 1 to 3. For
simplicity, we initially assume an equal number of nodes in each hidden layer. The
concept diagram of this DNN fitter is illustrated in Fig. 7.12.
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Figure 7.12: concept diagram of DNN fitter. The number of input features change based
on the number of extra wires we use, every one extra wire will increase input features
in one SL by 3.
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Neural-Network classifier for vertex-z distribution

In order to improve the rejection rate of tracks not originating from the IP (|𝑧0 | > 1cm),
we can utilize the capabilities of a DNN to directly predict whether a track is from
the IP or not. Instead of applying a wide cut on the output 𝑧0 as a manual selection
criterion, we can train a new DNN classifier with a binary target: 1 for tracks Off-IP
and 0 for tracks from the IP.

The structure of the DNN classifier follows the same architecture as depicted in
Fig. 7.12, but the output and target are modified to accommodate the classification task.
This DNN classifier only provided a output 𝑝 as the probability of background track.
The limitation on the number of hidden layers and nodes remains the same as before.
By training this new DNN classifier, we aim to achieve better rejection rates for tracks
not originating from the IP, surpassing the performance of a simple manual cut based
on 𝑧0 alone. And with the same input feature as DNN fitter, it is possible to perform
them parallel.

Attention based architecture for missing data modelling

As discussed in Section7.2, the incorporation of the second input strategy necessitates
the use of a specialized model capable of effectively handling missing data. In this
regard, the transformer model [46] has emerged as a promising candidate due to its
ability to evaluate the relationships between long-distance and short-distance features
and assigning attention to specific extracted features. This model may tackle the
missing data problem as evidenced by similar approaches employed in [47].

The main components of the transformer model include the attention structure, as
depicted in Fig. 7.13. In this structure, the attention weights and attention values are
calculated independently from the input vector and then multiplied together to obtain
the output. A softmax function is applied to attention weights to scale the sum of them
to one. The softmax can be described as:

𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑧𝑖) =
𝑒𝑧𝑖−𝑚𝑎𝑥 (𝑧)

Σ𝑒𝑧𝑖−𝑚𝑎𝑥 (𝑧)
(7.4)

This process enables the model to emphasize certain attention values based on
their corresponding attention weights. A typical transformer model consists of a
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combination of multiple attention structures.

X: input matrix
𝑊𝑖: transform matrix
Q: query matrix
K: Key matrix
V: Value matrix (attention value)

Softmax(
𝑄×𝐾𝑇

𝑑𝑘
) ∶ attention weights

Z: output matrix

Figure 7.13: Single head attention structure. 𝑄,𝐾,𝑉matrix are generated from input
matrix X with transform weights matrices𝑊 𝑖 . Weights matrix update during training.
Attention weights calculated from 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄×𝐾

𝑇

√
𝑑𝐾

), where softmax function scale
the sum matrix it to 1 and 𝑑𝑘 is the dimension of matrix 𝐾 , also used to scale it. The
attention weights are then multiply with attention value 𝑉 to get the output 𝑍 .

In our specific case, where we deal with two-dimensional input data and the
subsequent fitting/classification process can be effectively handled by a fully connected
NN, we adopt the architecture depicted in Fig. 7.14. Initially, the full wires input is
utilized to compute attention values and attention weights. The resulting values
obtained by multiplying each attention value with its corresponding attention weight
are then fed into a fully connected NN for the purpose of fitting 𝑧0 and 𝜃0, or for IP
track classification. To serve as a control group, we also train a fully connected NN
with an equivalent number of parameters and depth, employing the same input.

This architecture allows us to leverage the benefits of the attention mechanism in
extracting relevant features from the full wires input. The subsequent processing with
the fully connected NN enhances the modeling and prediction capabilities, thereby
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enabling accurate determination of 𝑧0 and 𝜃0, or reliable classification of IP tracks.
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Figure 7.14: concept diagram of Attention Based NN

Activate function

In the context of the aforementioned architectures, an important aspect to consider
is the choice of activation functions. Activation functions introduce non-linear
relationships within neural networks, and recent studies [48] have demonstrated
that different activation functions can have a significant impact on the performance
of neural networks. The currently used activation function, tanh(x/2), can also be
optimized.

Taking into account their widespread usage, we have compiled a list of potential
activation functions for optimization, including:

1. Hyperbolic Tangent Function (Tanh): The current Neurotrigger utilizes Tanh(x/2)
as its activation function. Tanh is a smooth, zero-centered function that maps
input values to the range [-1, 1]. It is advantageous because it can handle negative,
zero, and positive values effectively. However, it does not solve the vanishing
gradient problem. The output of Tanh(x/2) is given by Equation 7.5. We keep the
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activate function for 𝑧0 fitter output as Tanh(x/2) to scale it to (-1,1).

Tanh(x/2) = 𝑒𝑥𝑝 (𝑥/2) − 𝑒𝑥𝑝 (−𝑥/2)
𝑒𝑥𝑝 (𝑥/2) + 𝑒𝑥𝑝 (−𝑥/2) (7.5)

2. Sigmoid Function: The sigmoid function transforms input values to the range [0,
1]. It is a smooth and continuously differentiable function, and its derivative
is always positive. However, like Tanh, it suffers from the vanishing gradient
problem. Sigmoid activation is suitable for the classifier output as it scales the
output to (0, 1) thus we keep it as activate function for DNN classifier output.
The sigmoid function is defined in Equation 7.6.

Sigmoid(x) = 1
1 + 𝑒𝑥𝑝 (−𝑥) (7.6)

3. Rectified Linear Unit Function (ReLU). Relu has been the most widely used
activation function for deep learning applications. The ReLU activation function
performs a threshold operation on each input element where values less than
zero are set to zero thus the ReLU is given by Equ. 7.7. ReLU can solve the
vanishing gradient problem since the gradient at positive part is always 1. But it
may lead to some dead neurons because of set negative part to 0.

Relu(x) =
{
𝑥, 𝑖 𝑓 𝑥 > 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(7.7)

4. Leaky ReLU (LReLU): LReLU addresses the“dead” neuron issue by introducing
a small negative slope for negative input values. The parameter 𝛼 determines the
slope and is typically set to a small value, such as 0.01. The LReLU function is
defined in Equation 7.8.

leaky Relu(x) =
{
𝑥, 𝑖 𝑓 𝑥 > 0

𝛼 × 𝑥, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(7.8)

5. Exponential Linear Units (Elu). Elu expressed in Equ. 7.9 has negative values
which allows for pushing of mean unit activation closer to zero thereby reducing
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computational complexity thereby improving learning speed. It has the same
feature as ReLU in positive to solve the vanishing gradient.

Elu(x) =
{
𝑥, 𝑖 𝑓 𝑥 > 0

𝛼 × 𝑒𝑥𝑝 (𝑥) − 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(7.9)

The figures of every activate functions are showed in Fig. 7.15.

Figure 7.15: Activate functions. From left to right, up to down are Tanh, Sigmoid, Relu,
LRelu and Elu.

7.2.2 Training optimization algorithms tuning

In addition to the neural network architecture, the optimization algorithms for the
training process can also be fine-tuned. In this regard, we present three potential
candidates for gradient descent optimization algorithms to train our DNN.

Resilient backpropagation algorithm

Resilient backpropagation algorithm (RProp) [49] is a popular gradient descent
algorithm that only uses the signs of gradients to compute updates. This algorithm was
used in Neurotrigger training process. In (RProp), the parameter update can be written
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as:
𝑤 (𝑖+1) 𝑗𝑘 = 𝑤𝑖 𝑗𝑘 − 𝑙𝑟 × Δ𝑖 𝑗𝑘

𝜕𝐿𝑖

𝜕𝑤𝑖 𝑗𝑘
(7.10)

where Δ𝑖 𝑗𝑘 transforms follow:

Δ(𝑖+1) 𝑗𝑘 =


𝑀𝑎𝑥 (Δ𝑚𝑎𝑥 , 𝜂+Δ𝑖 𝑗𝑘), if 𝜕𝐿𝑖

𝜕𝑤𝑖 𝑗𝑘

𝜕𝐿𝑖−1
𝜕𝑤𝑖−1 𝑗𝑘

> 0

𝑀𝑖𝑛(Δ𝑚𝑖𝑛, 𝜂−Δ𝑖 𝑗𝑘), if 𝜕𝐿𝑖

𝜕𝑤𝑖 𝑗𝑘

𝜕𝐿𝑖−1
𝜕𝑤𝑖−1 𝑗𝑘

< 0
(7.11)

where (Δ𝑚𝑖𝑛,Δ𝑚𝑎𝑥 ) are preset range for Δ𝑖 𝑗𝑘 and (𝜂−, 𝑒𝑡𝑎+) follow 0 < 𝜂− < 1 < 𝜂+. A
common value for (𝜂−, 𝑒𝑡𝑎+) are set as (0.5, 1.2).

As showed in [49], RProp can speed up training process. Meanwhile, RProp provide
a different step size for each weight which can update each weights in independent
speed. But RProp generally requires large batch for update which may have not good
performance with too much randomness in small batches training.

Stochastic gradient descent algorithm with momentum

Stochastic gradient descent (SGD) calculated gradient descent from a stochastic selected
subset from the full sample. And the momentum was introduced to help accelerate
SGD in the relevant direction and dampens oscillations [50]. The full expression can be
written as:

𝑔𝑖 =
𝜕𝐿𝑖

𝜕𝑤𝑖 𝑗𝑘

𝑏𝑖 = 𝜇𝑏𝑖−1 + (1 − 𝜏)𝑔𝑖
𝑤 (𝑖+1) 𝑗𝑘 = 𝑤𝑖 𝑗𝑘 − 𝑙𝑟 × 𝑏𝑖

(7.12)

In the above equations, 𝑏𝑖 represents the gradient with momentum from the previous
iteration, initialized as 𝑏0 = 0. The parameter 𝜇 denotes the momentum factor, and 𝜏
represents the dampening factor. By incorporating the momentum from the previous
gradient, the training process can accelerate towards an optimal point while mitigating
oscillations when approaching it. In typical cases, 𝜇 is set to 0.9, and 𝜏 is set to 0,
indicating no dampening.
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Adaptive Moment Estimation algorithm

Adaptive Moment Estimation (Adam) [51] is an optimization algorithm that enables
different learning rates for different parameters in the neural network training process.
It follows a set of equations outlined as follows:

𝑔𝑖 =
𝜕𝐿𝑖

𝜕𝑤𝑖 𝑗𝑘

𝑚𝑖 = 𝛽1𝑚𝑖−1 + Φ1 − 𝛽1)𝑔𝑖
𝑣𝑖 = 𝛽2𝑣𝑖−1 + Φ1 − 𝛽2)𝑔2

𝑖

�̂�𝑖 =𝑚𝑖/(1 − 𝛽𝑖1)
𝑣𝑖 = 𝑣𝑖/(1 − 𝛽𝑖2)
𝑤 (𝑖+1) 𝑗𝑘 = 𝑤𝑖 𝑗𝑘 − 𝑙𝑟�̂�𝑖/(

√︁
𝑣𝑖 + 𝜖)

(7.13)

Here, (𝛽1, 𝛽2) are coefficients used to calculate the sums of the gradients and their
squares, typically set to (0.9, 0.999) by default. The variables𝑚𝑖 and 𝑣𝑖 represent the
momentum terms obtained from the gradient and its square, initialized with a value
of 0. The scaled versions �̂�𝑖 and 𝑣𝑖 remove the bias from the initial 0 values. The
parameter 𝜖 is a small constant added to ensure that (

√
𝑣𝑖 + 𝜖) is not equal to zero.

According to the findings presented in [51], Adam has exhibited superior perfor-
mance compared to other optimization algorithms. Therefore, we consider it as the
primary algorithm and perform a simple comparison with the other two algorithms
mentioned.

Batch size and learning rate

All three algorithms mentioned above can be applied at the batch level, which involves
using subsets of the total sample. Consequently, the selection of batch size and learning
rate becomes crucial, particularly for SGD and RProp. It is widely recognized that
a larger batch size can expedite model training through the parallelism of GPUs.
However, an excessively large batch size can result in poor generalization. The choice
of batch size is also closely related to the learning rate, as parameters are only updated
after processing a batch. Therefore, a large batch size is typically associated with
a small learning rate. Additionally, adjusting the global learning rate during the
training process using a technique known as a learning rate scheduler can be beneficial.
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This approach is also applicable to Adam though it could adjust the learning rate
adaptive[52]. Hence, we fine-tune the batch size, learning rate, and learning rate
scheduler prior to commencing the full training process.

Pytorch Lib

Our training and model building process rely on the PyTorch library [39], which offers
fast and flexible experimentation capabilities, efficient production workflows, and a
user-friendly interface.

7.2.3 Parameter tunning

We have a set of parameters that need to be tuned for our models, and they are as
follows:

• Batch size: Ranging from 256 to 4096.

• Learning rate: Ranging from 10−4 to 10−2.

• Optimization algorithm: Adam, SGD, or RPROP.

• Number of hidden layers: Ranging from 1 to 3.

• Number of hidden nodes: Ranging from 20 to 300.

• Activation function: Relu, Tanh(x/2), LRelu, or ELU.

For the DNN fitter, our tuning target is to minimize the 𝜎95, which is defined as
the standard deviation of the 𝑧𝑁𝑁0 − 𝑧𝑜 𝑓 𝑓 𝑙𝑖𝑛𝑒0 distribution for the central 95% of events.
This 95% cut is applied to reduce the contribution of outliers. For the DNN classifier,
the target is to maximize precision, which is calculated as the ratio of the number of
correctly classified tracks to the total number of tracks.

To conduct the multi-variable optimization, we utilized the nondominated sorting
genetic algorithm II (NSGA-II) [53] implemented in Optuna [54]. Optuna provides a
powerful framework for efficient and effective parameter optimization. We have not
performed any optimization for the attention-based fitter/classifier yet, as it requires
more than 10 times training time. This optimization process including few hundreds
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times of NN training and validation, and each full process of training and validation is
call a“trial”.
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8
Performance evaluation of DNN 3D track

trigger

This section illustrates the performance of DNN 3D track trigger performance, including
the parameters tuning results, and the finalized DNN fitter, classifier and attention
based NN performance.

8.1 Training samples

For the DNN training, a portion of the 2022 physics run data, which is specially taken
without HLT filtering is used. We randomly separated total offline events and generate
training sample, validation sample and test sample with certain fraction as 70%, 20%
and 10%. Only CDC trigger tracks related with a real offline reconstructed tracks are
used for training and validation. Fake tracks which only reconstructed in CDC trigger
but not related to real offline reconstructed tracks are saved only for testing. A total
of 1.1 million tracks are used for each expert training, with 0.34 million tracks for
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validation and 0.2 million tracks for testing. Besides about 80k fakes tracks saved
for testing. To compare different feature engineering strategy, six different types of
samples are generated from the same events, as shown in Table 8.1. The sample #1
follows the same condition as previous Neurotrigger training and is used as control
group.

Number Input type 𝑡0 ADC LUT Full L/R LUT
#1 Selected extra wires Fastest Priority × ×
#2 Selected extra wires ETF × ×
#3 Selected extra wires Fastest Priority ✓ ×
#4 Selected extra wires Fastest Priority × ✓
#5 Selected extra wires ETF ✓ ×
#6 Full wires ETF ✓ ×

Table 8.1: Type of training samples

As for parameter tuning process, 100,000 tracks from the above training samples
are used for training and another 50,000 tracks from the training samples are used for
validation.

8.2 Parameters tuning results

We tune the parameters mentioned in 7.3.3 before the finalize the DNN training. Since
the learning rate (𝑙𝑟 ), batch size and optimization algorithm highly influence the
training speed, we first tune these three. First we fixed other parameters and now the
model is as Table 8.2

We just enlarge other parameters to maximum to make sure this learning rate is
suitable even with the largest model. Only 54 input feature which corresponding
to one extra wire was used to simplify and speed up the tuning process. A total a
100 trial tuning was performed and 𝑙𝑟 and batch size are suggested with exponential
order. Optimization algorithm are chosen from Adam, SGD and RPROP. The result of
𝜎95 distribution is showed in Fig. 8.1. All trials stopped before reach the maximum
epoch which suggests it converged. We could tell that the learning rate and batch
size have a little influence ∼ 0.1 cm on the 𝜎95, and best batch size/learning rate is
at 512/2.95 × 10−3. Optimization algorithm contribute a large difference. Adam has



8.2 Parameters tuning results 101

Parameter Value
Fixed parameter

Data type samples #5
Model type DNN fitter

Input features 54 (1 extra wire)
Number of hidden layers 3
Number of hidden nodes 300

Activation function Relu
Maximum Epoch 2000

Tunning parameter
Batch size Ranging from 256 to 4096

Learning rate Ranging from 10−4 to 10−2

Optimization algorithm Adam, SGD, or RPROP

Table 8.2: Parameter setting for tuning of batch size, learning rate and Optimization
algorithm

general 1 cm improvement on 𝜎95 comparing with Rprop or SGD. We pick up the
best trials for SGD, Adam and RProp and compare the loss decrease in the training
process as showed in Fig. 8.2. It is clear that Adam can not only speed up the training
to around only 100 epochs even with the largest model.

Thus, we fixed learning rate as 2.9 × 10−3, batch size as 512 and optimization
algorithm as Adam. This is applied for both DNN fitter and DNN classifier since they
have similar structure with only different target.

8.2.1 DNN fitter

For DNN fitter tuning, the tuning model as Table 8.3:
It should be mentioned that a callback function used to stop training if no improve-

ment after 50 epochs was applied to speed up tuning process. A total of 300 trials of
tuning was performed, and the results are showed in Fig. 8.3. It is clearly that ReLU
and LReLU got a better final 𝑠𝑖𝑔𝑚𝑎95 in general. And 3 hidden layers trials have a
more than 1 cm improvement for 𝜎95 with 1 or 2 hidden layers trials, large number of
hidden layers have not been tried yet due to the latency requirement. The best point of
number of hidden nodes is at 207. Fig. 8.6 show the combination influence of #hidden
layers and #hidden nodes while keep activate function as LRelu, at where we could see
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Figure 8.1: Batch size, learning rate and optimization algorithm tuning results. Left for
batch size versus 𝜎95 and right for learning rate.

Parameter Value
Fixed parameter

Data type samples #5
Model type DNN fitter

Input features 54 (1 extra wire)
Batch size 512

Learning rate 2.9 × 10−3

Maximum Epoch 2000
Optimization algorithm Adam

Tunning parameter
Number of hidden layers from 1 to 3
Number of hidden nodes from 20 to 300

Activation function Relu, Tanh(x/2), LRelu, or ELU.

Table 8.3: Parameter setting for tuning of DNN fitter
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Figure 8.2: Error cure for the Best trial of Adam, SGD and RProp. Upper is the loss for
training sample (in a single batch) and lower is the loss for validation sample (in full
sample).
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that, three hidden layers trials always have a 1 cm improvement comparing with one
or two hidden layers trials. And for a minimize model, even with 69 hidden nodes we
could keep 𝜎95 ∼5.2 cm, which can be easier to deployed on FPGA. We choose LRelu as
activate function, with #ℎ𝑖𝑑𝑑𝑒𝑛 𝑛𝑜𝑑𝑒𝑠 = 207 and #ℎ𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟𝑠 = 3 for DNN fitter full
training to see the best performance of this structure.
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Figure 8.3: DNN fitter tuning results. Left: 𝜎95 comparing with #ℎ𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟𝑠 . Right:
𝜎95 comparing with #ℎ𝑖𝑑𝑑𝑒𝑛 𝑛𝑜𝑑𝑒𝑠

8.2.2 DNN classifier

For DNN classifier tuning, the tuning model is as Table 8.4. The others are the
same as DNN fitter, only with a shift of NN output from 𝑧0 and 𝜃0 to the boolean
of if track originated from IP (𝑧0 < 1cm). And the tuning target is to maximize the
𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ≡ #𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑑 𝑡𝑟𝑎𝑐𝑘𝑠

#𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑎𝑐𝑘𝑠 . A total of 300 trials are performed. The results are
showed in Fig. 8.5. For classifier case, Tanh(x/2) gives a better performance with a 1
percent improvement in 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 from ReLU. And similar tendency in #ℎ𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟𝑠
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Figure 8.4: 𝜎95 of different combination of #hidden nodes and #hidden layer, keeping
activate function as LRelu

was seen, that 3 hidden layers trials have a 1 percentage improvement in 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦
while 1 hidden layer and 2 hidden layers got similar result. The best point of number of
hidden nodes is at 160. Fig. 8.6 show the combination influence of #hidden layers and
#hidden nodes while keep activate function as Tan(x/2). It is interesting that the with
only one hidden layer and 72 hidden nodes, it can obtain a precision of 92%, which is
only one percent decrease as the best one, while two hidden layers trials have a worse
performance. We choose Tanh(x/2) as activate function, with #ℎ𝑖𝑑𝑑𝑒𝑛 𝑛𝑜𝑑𝑒𝑠 = 160 and
#ℎ𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟𝑠 = 3 for DNN classifier full training.

8.2.3 Attention based Architecture

We have not tuned the attention based NN yet since it take 10 times longer training
time. Thus, We set the default model parameters as Table 8.5, which try to keep same
depth as DNN cases and possible smallest free parameters.
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Parameter Value
Fixed parameter

Data type samples #5
Model type DNN Classifier

Input features 54 (1 extra wire)
Batch size 512

Learning rate 2.9 × 10−3

Maximum Epoch 2000
Optimization algorithm Adam

Tuning parameter
Number of hidden layers from 1 to 3
Number of hidden nodes from 20 to 300

Activation function Relu, Tanh(x/2), LRelu, or ELU.

Table 8.4: Parameter setting for tuning of DNN Classifier
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Figure 8.5: DNNClassifier tuning results. Left: 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 comparingwith #ℎ𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟𝑠 .
Right: 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 comparing with #ℎ𝑖𝑑𝑑𝑒𝑛 𝑛𝑜𝑑𝑒𝑠𝑠
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Figure 8.6: 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 of different combination of #hidden nodes and #hidden layer,
keeping activate function as Tanh(x/2)

Parameter Value
Data type samples #6
Model type Attention Based architecture

Input features 126
Batch size 512

Learning rate 2 × 10−3

Maximum Epoch 2000
Optimization algorithm Adam

Number of attention values/weights 81
Number of hidden layers after attention structure 1
Number of hidden nodes after attention structure 81

Activation function Relu

Table 8.5: Parameter setting for Attention Based architecture
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Parameter Value
Data type samples #1
Model type Neurotrigger

Input features 27 (no extra wire)
Batch size 2048

Learning rate 10−3

Maximum Epoch 2000
Optimization algorithm Adam
Number of hidden layers 1
Number of hidden nodes 81

Activation function Tanh(x/2)

Table 8.6: Parameter setting for original Neurotrigger retraining

8.3 Performance evaluation

This is section shows the performance evaluation for retrained original Neurotrigger,
DNN fitter, DNN classifier and attention based structure.

8.3.1 Control group: Retrained original Neurotrigger

To comparing the DNN 3D track trigger performance, first we retrained the origin
Neurotrigger with new data taken from physics run as control group. The training
parameters are showed in Table 8.6

We tested it with the test sample, and the Fig. 8.7 show its Δ𝑧0 distribution at full
range and at IP region with |𝑧offline

0 | < 1. The 𝑧0 resolution of track from IP region
directly related to the trigger efficiency, thus we extract it from the origin distribution.
𝜎95 is calculated for both distribution. Besides, we also care about the minimized range
including 95% entries (range95), which is directly represent the selection condition we
could apply to keep 95% signal tracks. For the retrained Neurotrigger, range95 = 13.6
The 2D plot of 𝑧NN

0 and 𝑧offline
0 are showed in Fig. 8.8. Comparing with the hardware

trigger performance as Fig. 6.12 and Fig. 6.13, retrained Neurotrigger with 𝜎 IP
95 = 5.53

even have worse IP resolution. This can be induced by different test samples, because
we use a later phase data from 2022 run contaminated with high background level.
Meanwhile, the linear relationship of 𝑧NN

0 and 𝑧offline
0 became better, which lead to a

reeducation of background trigger rate.
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Figure 8.7: Δ𝑧0 distribution for retrained Neurotrigger. Left: Full scale; Right: IP region
with |𝑧offline
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0 from retrained Neurotrigger.
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8.3.2 DNN fitter Performance

After well tuned DNN fitter, we trained it with full training samples. Fig.8.9 show
the test result base on samples #5 and with 1 extra wire. The 𝜎FUll=6.21

95 for full scale
distribution improved by 3 cm and IP resolution 𝜎 IP=2.34

95 improved by factor 2 comparing
with Fig. 8.9. Besides, considering the range95 = 7.19cm, we could restrict the selection
condition by 5 cm while maintain the same efficiency. As for the 2D plot as Fig. 8.10, a
well linear relationship can be seen even at 𝑧offline

0 > 50cm, which is not premised in
retrained Neurotrigger.
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Figure 8.9: Δ𝑧0 distribution for tuned DNN fitter #5 and with extra wire 1. Left: Full
scale; Right: IP region with |𝑧offline

0 | < 1.

We also focus on the trigger efficiency and background reject rate, since our
DNN fitter works on the track level, here we also use the signal track efficiency and
background track reject rate for tracks here, which are defined as:

Signal Track Effiency =
#Signal Tracks Pass selection

#Total Signal Track

Background Track Reject Rate =
#Off − IP Background Tracks Not Pass selection

#Total Off − IP Background Track
(8.1)

It should be noted that only tracks that related with a certain offline reconstructed track,
which have certain 𝑧offline

0 , were used for training, validation, and testing here. Fake
tracks which are built into CDC track trigger which not related with real track were
not considered. Thus, the background track only contributes from Off-IP background
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Figure 8.10: 2D plot of 𝑧NN
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0 from tuned DNN fitter.
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tracks. The detail discussion of fake track events was showed in Section. 8.3.5. Signal
tracks are defined as track with |𝑧offline

0 | < 1. Here we use selection condition as
|𝑧NN

0 | < 15, which is same as CDCTRG low-multi bits 𝑧0 condition. It should notice
that here the efficiency did not take track selection into consideration since it is same
for all NN trigger method, where we always require 3 of 4 stereo layers has hits related
with 2D track.

To check the different feature engineering strategy influence on resolution, signal
track efficiency, and background track reject rate, we compare the performance from
sample #1∼ #5 at different 𝑝𝑇 with fixing input feature = 54, which corresponding to 1
extra wire used as showed in Fig. 8.11. Neurotrigger performance was included as
control group. From upper left figure, it is clear that DNN fitter resolution improve by
more than 2 factors at every point comparing with Neurotrigger. But the different
feature engineering strategy can not show distinguishable difference. At the Upper
right figure, we can also see the resolution is better at every point, especially for IP
tracks. As for signal track efficiency, at 𝑝𝑇 < 0.5GeV the samples #2 #3 #4 gain an
improvement with 0.5% comparing with sample #1 and sample #5 which applied both
ADC LUT and ETF timing gain a 1% more improvement. While for the background
track reject rate, a distinguishable difference can be told at 𝑝𝑇 > 2GeV region. Thus, we
prefer to conclude that for DNN fitter 𝑧0 resolution case, new introduced ADC LUT, Full
L/R LUT and ETF timing provide an improvement at both efficiency and background
track reject rate, while this do not work for the full resolution improvement.

We all checked impact of extra wires inputs samples #5. We trained and test 4 DNN
with #input feature = (27,54,81,108) which corresponding to origin input, 1 extra wire,
2 extra wires and 3 extra wires. The hidden structures are kept as the same for these
four. The results are showed in Fig. 8.12. At every figure, we could see that the extra
wires 1/2/3 input have a improvement comparing with extra wires 0 input, even for
resolution, a 1 cm improvement can be seen at 𝑝𝑇 <0.5 GeV. But considering 1,2 or
3 extra wire(s) themselves, we did not see significant difference in between. Thus,
to keep a minimal resource cost, we prefer to use the extra 1 wire case. Combining
Fig. 8.12 with Fig. 8.3, we demonstrate that for DNN fitters architecture, optimization of
the number of hidden layers and hidden nodes make main contribution, while the extra
input features only provides a slight improvement, and feature engineering followed.
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Figure 8.11: Performance comparison between different feature engineering strategies.
Upper left: 𝜎95 versus transverse momentum 𝑝𝑇 ; Upper right:𝜎95 versus |𝑧𝑜 𝑓 𝑓 𝑙𝑖𝑛𝑒0 |; Lower
right: Efficiency versus 𝑝𝑇 ; Lower right: Background reject rate versus 𝑝𝑇 .
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Figure 8.12: Performance comparison of different extra wire(s). Upper left: 𝜎95 versus
transverse momentum 𝑝𝑇 ; Upper right:𝜎95 versus |𝑧𝑜 𝑓 𝑓 𝑙𝑖𝑛𝑒0 |; Lower right: Efficiency
versus 𝑝𝑇 ; Lower right: Background reject rate versus 𝑝𝑇 .

8.3.3 DNN classifier Performance

After well tuned DNN fitter, we also trained it with full training samples. Fig.8.9 show
the test result base on samples #5 and with 54 input features. Regarding tracks with
𝑝 >= 50% as background tracks, we can calculate the signal track efficiency = 92.7%
and background track reject rate = 89.1%. By adjusting the 𝑝 cut, we can adjust the
signal track efficiency to meet the efficiency requirement.

To compare the DNN classifier performance with DNN fitters, we applied both of
them on same test samples and combine its output. Fig.8.14 show the 2D plot of DNN
fitter while we applied the 𝑝 < 50% cut on each track. It is clear that the 𝑝 cut can keep
the tracks from IP even with predicted 𝑧NN

0 > 25cm from DNN fitter, while reject most
background tracks inside the 𝑧NN

0 < 15cm cut region. However, we still could see
about 3% of signal track with predicted 𝑧NN

0 < 1 are rejected by 𝑝 cut. To maintain the
advantage from both DNN fitter and DNN classifier, we propose to use it parallel.

Same as DNN fitter, we check the impact of increasing the different feature
engineering strategy, we trained and tested DNN classifier with sample #1 ∼ #5 and
fixed #input feature = 54. Fig. 8.15 show the result. In this figure, we keep Cut of 𝑝 as 65
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Figure 8.13: Background Probability 𝑝 distribution for signal track (blue) and background
track (orange), tested with sample #5 and DNN Classifier. Reject rate and signal
efficiency are calculated regarding tracks with 𝑝 >= 50% as background tracks.
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Figure 8.14: 2D plot of 𝑧NN
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0 from tuned DNN fitter passed the 𝑝 < 50% cut
(Left) and rejected by the cut (Right). The red dash line shows the cut of |𝑧NN
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.
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for DNN classifier and cut of 𝑧NN
0 as 15 cm for retrained NeuroTrigger, where the later

one is the default cut with CDCTRG low-multi bits. It is clear that all DNN classifier
have ∼ 80% improvement of 𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑅𝑒 𝑗𝑒𝑐𝑡 𝑅𝑎𝑡𝑒 with 𝑝𝑇 <1 GeV. Meanwhile,
the 𝑆𝑖𝑔𝑛𝑎𝑙 𝐸𝑓 𝑓 𝑖𝑐𝑖𝑒𝑦 is also better at full scale of 𝑝𝑇 except 𝑝𝑇 <0.5 GeV.For efficiency
at low 𝑝𝑇 , we can improve it by increasing 𝑝 cut. Considering different samples
case, the 𝑆𝑖𝑔𝑛𝑎𝑙 𝐸𝑓 𝑓 𝑖𝑐𝑖𝑒𝑦 keeps almost same while we can see the improvement in
𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑅𝑒 𝑗𝑒𝑐𝑡 𝑅𝑎𝑡𝑒 with applying ADC CUT (sample #4), using ETF (sample #2)
and using L/R LUT (sample#3). The sample #5 have the best performance with ETF and
ADC LUT applied, which have a general 5% 𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑅𝑒 𝑗𝑒𝑐𝑡 𝑅𝑎𝑡𝑒 improvement
with 𝑝𝑇 >2 GeV.

We also check the impact from input features. Fig. 8.16 show the comparison
for #input feature = (27,54,81,108) with sample #5. The same cut as above has been
applied. We can see a more than 2 percent improvement for 𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑅𝑒 𝑗𝑒𝑐𝑡 𝑅𝑎𝑡𝑒
comparing no extra wire case (#input feature = 27) and with extra wire cases(#input
feature = 54,81,108). A large deviation about 3 percent can also be seen for these two
types as 𝑆𝑖𝑔𝑛𝑎𝑙 𝑒 𝑓 𝑓 𝑖𝑐𝑖𝑒𝑛𝑐𝑦 especially with 𝑝𝑇 <0.5 GeV. And considering 1, 2 or 3
extra wire(s) cases, no distinguishable difference can be told.

In conclusion, the DNN classifier architecture can improve 𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑅𝑒 𝑗𝑒𝑐𝑡 𝑅𝑎𝑡𝑒
by 80% at low 𝑝𝑇 while keeping almost same 𝑆𝑖𝑔𝑛𝑎𝑙 𝐸𝑓 𝑓 𝑖𝑐𝑖𝑒𝑛𝑐𝑦 in full scale. But this
must use extra wires input otherwise we’ll lose efficiency. A detail comparison of the
𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑅𝑒 𝑗𝑒𝑐𝑡 𝑅𝑎𝑡𝑒 and 𝑆𝑖𝑔𝑛𝑎𝑙 𝐸𝑓 𝑓 𝑖𝑐𝑖𝑒𝑛𝑐𝑦 with different cuts for are showed in
Section. 8.4.

8.3.4 Attention based NN trigger

For Attention Base Fitter, the Δ𝑧0 distribution is showed in Fig. 8.17 and 2D plot in
Fig. 8.19. The full resolution improved by 1 cm further comparing with DNN fitter #5.
And IP resolution also improved by 0.5 cm. To check if this improvement is from
architecture difference, we trained a special DNN fitter#6 with same depth, input
feature and free parameters of Attention Base Fitter as a control group. This DNN
fitter#6 have 3 hidden layers and 90 hidden nodes per layer, with total free parameters
of 27,810. And Fig. 8.19 show the 𝜎95 at different 𝑝𝑇 for Attention Based Fitter and
DNN fitter #5 and DNN fitter #6. Attention Based Fitter got a (0.5 ∼ 1.5)cm resolution
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Figure 8.15: 𝑆𝑖𝑔𝑛𝑎𝑙 𝐸𝑓 𝑓 𝑖𝑐𝑖𝑒𝑦 (Left) and 𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑅𝑒 𝑗𝑒𝑐𝑡 𝑅𝑎𝑡𝑒(Right) versus trans-
verse momentum 𝑝𝑇 for sample #1 ∼ #5 cases. Cut of 𝑝 was set as 65 for DNN classifier
and cut of 𝑧NN

0 was set as 15 cm for retrained NeuroTrigger.
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Figure 8.16: 𝑆𝑖𝑔𝑛𝑎𝑙 𝐸𝑓 𝑓 𝑖𝑐𝑖𝑒𝑦 (Left) and 𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑅𝑒 𝑗𝑒𝑐𝑡 𝑅𝑎𝑡𝑒(Right) versus trans-
verse momentum 𝑝𝑇 for # input feature = (27,54,81,108) cases. Cut of 𝑝 was set as 65 for
DNN classifier and cut of 𝑧NN

0 was set as 15 cm for retrained NeuroTrigger.
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improvement at different 𝑝𝑇 comparing with both DNN fitters. And we can see DNN
fitter #6 have almost same performance as DNN fitter #5, even with enlarge input
feature and free parameters. This implied that the attention based structure do help to
make better use of the extra wires input. Another thing can be seen from DNN fitter #5
and DNN fitter #6 is that the missing data problem no longer reduce the resolution
with deep learning structure, which is still a main problem for single-hidden-layer NN
as illustrate in [18]. Thus, a possible attempts to merge the five experts into single one
with DNN will be tested in further.
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Figure 8.17: Δ𝑧0 distribution for Attention Based Fitter. Left: Full scale; Right: IP region
with |𝑧offline

0 | < 1.

And we also check the performance of Attention Based Classifier as Fig. 8.20. The
Attention Based Classifier has a 1% accuracy improvement further comparing with
DNN classifier. It should be stressed that current Attention Based NN trigger have not
been well tuned. So it may still remain space for improvement. And We will conduct a
full tuning for it then.

8.3.5 Fake tracks background

As mentioned in 6.1, main background tracks are from two sources: Off-IP tracks and
fake track, for training, validation and testing we did not include fake tracks since they
do not have any true 𝑧0 or 𝜃0. Since we want to check the performance of current NN
with the fake tracks, we generated a sample with 87,287 fake tracks and applied every
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Figure 8.18: 2D plot of 𝑧NN
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0 from Attention based fitter.
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Figure 8.19: 𝜎weighted versus 𝑝𝑇 for Attention Based Fitter, comparing with DNN fitter
#5, #6 and retrained Neurotrigger. DNN fitter #6 has same depth, free parameters and
input features as Attention Base Fitter, with only different in architecture—DNN fitter
#6 is full connected while attention based fitter have a transformer layer.
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Figure 8.20: Attention Based Classifier’s background Probability 𝑝 distribution for
signal track (blue) and background track (orange), tested with sample #6

NN on it to see the output. For 𝑧0 fitter case, the results are showed in Fig. 8.21. It is
clear that the distribution of 𝑧𝑁𝑁0 for fake tracks has a certain structure. But with 𝑧𝑁𝑁0
selection criteria as 𝑧𝑁𝑁0 <15 cm, we could reject 59.5%(61.0% /59.4%) fake tracks with
retrained Neurotrigger(DNN fitter #5 /Attention based fitter). There is no significant
difference at the same selection criteria. However, with better IP resolution, we could
apply more strict selection criteria, which provide better fake track events rejection
rate. Considering the classifier cases, the output background probability distribution is
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Figure 8.21: Output 𝑧𝑁𝑁0 distribution for fake tracks from (a) retrained Neurotrigger (b)
DNN fitter #5 with extra 1 wire (c) Attention based fitter

showed in Fig 8.22. It is interesting that even without inputting any fake tracks for
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training, the classifier can distinguish the fake tracks somehow and output a large
background probability for most case. Applying selection criteria as 𝑝𝑁𝑁 < 50% we can
obtain 76.6%(77.2%) fake tracks events rejection rate with DNN classifier #5 (Attention
based classifier). The detail comparison of efficiency and fake track events rejection
rate are showed in next section.
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Figure 8.22: Output background probability distribution from (a) DNN classifier #5
with extra 1 wire (b) Attention based classifier

8.4 Summary

We summarized the Signal Events Efficiency and Total Background Events Rejection
Rate for the above models with different selection condition to give a direct comparison
as Fig. 8.23. In order to show the possible architecture for directly implemented on UT4,
small DNN fitter (classifier) with 3(1) hidden layers, 69(72) hidden nodes and Other
parameters keep same as DNN fitter (classifier) #5 are trained and included in Fig. 8.23.
The signal events and backgrounds events follows the same definition as Table 6.2. To
simplify the trigger conditions, we regard events with at least 1 CDC 3D trigger track
pass selection condition as the triggered events, otherwise not triggered. To separate
the effects of Off-IP Background Events and Fake Track Background Events, we show
each of it rejection rate comparing with Signal Events Efficiency in Fig.8.24.

Considering we want to keep a 95% Signal Track Efficiency, we summarize the
performance of these NN into Tab. 8.7 with selection to obtain the same efficiency. It is
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Figure 8.24: ROC curve of Signal Events Efficiency and Off-IP Background Events
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clear that the Attention based classifier got the best performance, which can improve
the Background Reject Rate from 59.6% to 88.4% comparing with origin Neurotrigger.
Assuming the same fraction and trigger rate as we showed in Tab. 6.3,6.4, we can
reduce the CDCTRG 𝐵𝐵 raw trigger rate by 1.5 kHz and CDCTRG low-multi raw
trigger by 1.4 kHz. And the classifier always got a better performance rather than the
fitter even with the small one.

8.5 Discussion for firmware implementation

We plan to implement our CDC Neural Network (NN) triggers on the UT4 platform
utilizing the Virtex UltraScale 7 XCVU160 FPGA, which offers a fourfold increase in
logic gate capacity compared to the UT3 platform. When considering the dominant
resource usage of the FPGA, namely the digital signal processing (DSP) capability, it
is important to note that the previous Neurotrigger implementation accounted for
44% of the UT3 DSP resources and 30 % LUT resources [40], with a total of 2,349 free
parameters.

Currently, the best-performing Deep Neural Network (DNN) fitter, DNN classifier,
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Type Selection Signal
Efficiency (%)

Background
Efficiency (%) Depth Free

Param.
Neurotrigger |𝑧NN

0 | < 13cm 95.6 40.4 3 2,349
DNN fitter |𝑧NN

0 | < 8cm 95.8 26.5 3 99,066
Small DNN fitter |𝑧NN

0 | < 8cm 95.4 26.9 3 13,386
Attention Based Fitter |𝑧NN

0 | < 6cm 95.2 20.6 3 27,621
DNN Classifier 𝑝 < 51% 95.2 17.1 3 60,160

Small DNN Classifier 𝑝 < 60% 95.2 23.8 1 4,093
Attention Based Classifier 𝑝 < 40% 95.2 11.6 3 27,540

Table 8.7: Selection condition, Signal Efficiency and Background Efficiency (1 –
background rejection rate) comparison of Neurotrigger, (small) DNN fitter & classifier
and Attention Based fitter & Classifier. Manually set integer selection condition to
keep efficiency above 95% for every module. Free param. includes all the weights in the
NN which should be recorded in FPGA.

Attention-Based fitter, and Attention-Based classifier have a significantly larger number
of free parameters, specifically 99,066, 60,160, 27,621, and 27,540, respectively. These
structures can not be directly implementable on the UT4 platform. However, the
small DNN fitter (Classifier) with only 13,386 (4,093) free parameters, is feasible for
implementation on the current UT4 platform without any modification and also
improve the background events rejection from 59.6% to 76.2%.

Moreover, the Attention-Based fitter/classifier, which is approximately 10 times
larger than the current structure, may also be optimized and pruned to reduce its
overall size, and subsequently implemented on the UT4 platform. Looking towards the
future upgrade of UT5, which offers a further fourfold improvement in capacity, all of
these logic implementations become feasible and can be accommodated.
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Conclusion

The Belle II Experiment, situated at the SuperKEKB asymmetric electron-positron
collider in Japan, is the next generation B-factory, aiming to explore new physics (NP)
in the flavor sector at the intensity frontier and enhance the precision of measurements
for Standard Model (SM) parameters. SuperKEKB is expected to achieve the highest
luminosity in the world, reaching 6 × 1035, cm−2s−1, enabling unprecedented precision
in NP searches and measurements of the CKM matrix. However, two obstacles hinder
the increase in luminosity at present. One is sudden beam loss events which prevent
for reaching higher bunch current and cause severe damaged to the collimators and
detectors. Another one is that the increasing level-1 trigger rate will soon reach
designed limitation and background trigger contribute a large part of.

To address this sudden beam loss, we have installed fast loss monitors along the
SuperKEKB main ring, supplemented by existing loss monitors and beam monitors.
Through detailed timing analysis, we have identified the possible location for sudden
beam loss. Under nominal collimator settings, the earliest loss was observed in the LER
D06 section, indicating the occurrence of initial beam instability in or upstream of the
D06 section. Notably, after opening the D06 collimator due to severe damage, the
earliest loss was observed at the D02 collimator. Precursor phenomena such as beam
size blowup or beam orbit deviation were rarely observed before the earliest beam loss.
Although the cause of sudden beam loss events is not fully understood, we plan to
implement countermeasures such as fast beam abort and additional sensors at the
D06 section to issue abort requests and obtain multi-angle beam information. These
measures aim to safeguard our detectors and collimators from sudden beam loss.

Regarding the level-1 CDC trigger, we have developed three different architectures
for a new neural-network trigger. Through software simulations, we examined the
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performance of each architecture, including the introduction of extra input features,
pre-selection methods, and changes to the architecture itself. The results confirmed
that the new architectures led to an 80% improvement in off IP background track reject
rate while maintaining the same efficiency as the original Neurotrigger architecture.
This improvement is expected to reduce the total raw CDC trigger background by more
than 2 kHz. Moving forward, we will continue working on simplifying the architecture
and implementing it in the UT4 modules to achieve practical functionality.
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Table A.1: Summary of the sudden beam loss events from February to
July 2022 with the measured beam loss timing on each sensor. The sensor
with the fastest timing is written in the rightest column. Radiation does
at the diamond, amount of beam loss at BCM, and if QCS is quenched
are shown to explain size of the beam loss.

Date
Diamond BCM QCS Sensor timing (Δ𝑇, 𝜇𝑠) Fastest
does(mrad) loss(%) quench BCM D06H3 D6V1 D06V2 D02V1 Diamond Sensor

2022/2/28-3/13

2022/3/06 18:35 15 12.68% -6.07 - -32.1 -20.29 -26.94 3.1 D06V1 PMT
2022/3/11 7:09 - 14.79% -6.09 - -5.86 -29.16 -11.85 5.6 D06V2 PMT
2022/3/11 10:08 544 17.88% ◦ -7.5 - -8.51 -8.40 -15.54 -6.9 D02V1 PMT

2022/3/14-3/27

2022/3/15 3:18 - 5.90% 0.96 - -19.46 -19.22 -11.85 15.6 D06V1 PMT
2022/3/20 7:39 - 0.66% 1.46 - -14.12 -13.63 - - D06V1 PMT
2022/3/21 10:36 - 0.56% -4.63 - -22.33 -21.89 - 57.1 D06V1 PMT
2022/3/22 8:15 - 6.89% -5.76 - -35.3 -34.75 - -1.9 D06V1 PMT
2022/3/23 13:49 9 12.09% -6.84 - -14.91 -14.48 - -1.9 D06V1 PMT
2022/3/23 22:20 12 59.36% -1 -3.71 -12.08 -9.2 -1.78 8.1 D06V1 PMT
2022/3/27 10:34 106 8.03% -4.24 - -15.26 -15.25 -11.85 -9.4 D06v2 pMT

2022/3/28-4/10

2022/4/03 17:14 37 1.52% 2.58 - -20.12 -20.15 -16.88 5.6 D06V2 PMT
2022/4/07 0:16 40 4.10% -12.51 - - - -16.87 -11.9 D02V1 PMT
2022/4/08 8:52 17 1.86% -6.96 - - - -11.57 3.1 BOR HOR
2022/4/08 11:55 91 2.17% ◦ -2.47 - - - -11.85 -9.4 D02V1 PMT

2022/4/11-4/24

2022/4/11 12:09 139 7.95% -3.72 - -12.11 -12.2 -8.61 -4.4 D06V2 PMT
2022/4/15 23:30 51 6.65% 0.22 - -8.94 -13.43 -9.91 3.1 D06V2 PMT
2022/4/16 5:02 - 0.46% -3.76 - -13.01 -13.21 -9.47 -4.4 D06V2 PMT
2022/4/19 0:58 42 3.20% 2.57 - -7.96 -14.89 -8.49 -1.9 D06V2 PMT
2022/4/20 23:36 41 4.81% -5.87 - -15.26 -15.69 -11.84 0.6 D06V2 PMT
2022/4/21 11:08 14 0.94% -7.11 - -15.94 -16.14 -11.84 -11.9 D06V2 PMT

2022/4/25-5/8

2022/4/28 17:25 95 13.42% -2.4 - - -24.76 -9.3 -16.9 D06V2 EMT
2022/4/29 5:12 111 13.05% 1.75 - -10.82 -10.49 -12.66 -6.9 D02V1 PMT
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Date
Diamond BCM QCS Sensor timing (Δ𝑇, 𝜇𝑠) Fastest
does(mrad) loss(%) quench BCM D06H3 D6V1 D06V2 D02V1 Diamond Sensor

2022/5/02 1:19 57 4.84% -5.48 - -13.54 -13.32 -10.19 -9.4 D06V1 PMT
2022/5/03 3:02 12 1.14% 11.29 - 0.73 -10.99 5.18 15.6 D06V2 EMT
2022/5/07 8:40 55 19.18% 2.81 - -18.73 -18.47 -5.08 -1.9 D06V1 PMT
2022/5/07 14:17 107 5.47% -7.49 - -19.24 -19.27 -13 -14.4 D06V2 EMT
2022/5/08 2:44 51 3.75% -4.33 - -16.9 -18.16 -11.84 -6.9 BOR HOR

2022/5/9-5/22

2022/5/10 15:56 - 0.54% -7.48 - -16.66 -16.68 -13.15 0.6 D06V2 EMT
2022/5/10 23:01 175 44.88% -6.33 - -15.26 -14.92 -11.1 -9.4 D06V1 PMT
2022/5/11 1:58 19 0.54% -4.89 - -13.26 -13.22 -10.01 -6.9 D06V1 PMT
2022/5/11 8:00 53 4.30% -6.09 - -14.03 -13.91 -10.68 -4.4 D06V1 PMT
2022/5/13 13:48 27 1.18% -5.83 - -14.25 -14.47 -10.95 0.6 D06V2 EMT
2022/5/14 13:21 618 17.24% -0.61 - -8.46 -9.8 -5.06 0.6 BOR HOR
2022/5/17 14:38 471 54.39% ◦ -7.24 - -10.05 -10.10 -15.63 -14.4 D02V1 PMT

2022/5/23-6/5

2022/5/28 5:11 48 5.63% 0.39 - -7.82 -7.58 - -11.9 D06V1 PMT
2022/5/28 10:13 48 3.87% -8.25 - -16.78 -22.01 - -16.9 D06V2 EMT
2022/6/01 4:47 96 18.42% -7.39 - -17.37 -17.47 -11.84 -9.4 D06V2 EMT
2022/6/01 22:05 739 28.50% ◦ -4.25 - -12.04 11.83 -8.97 -1.9 BOR VER
2022/6/02 22:55 - 0.95% -7.9 - -16.06 -16 -12.71 -9.4 D06V1 PMT
2022/6/3 14:48 1018 53.16% ◦ -10.31 4.98 -10.23 -9.9 -13.95 -9.4 D02V1 PMT
2022/6/04 16:35 158 7.15% -0.6 - -5.19 -14.56 -11.51 3.1 D06V2 EMT
2022/6/05 5:31 229 37.40% -2.4 - -6.22 -15.92 -11.44 0.6 D06V2 EMT
2022/6/05 1:59 436 7.88% -4.41 7.34 -12.26 -12.15 -8.94 -9.4 D06V1 PMT

2022/6/6-6/19

2022/6/08 17:31 341 28.71% -6.74 - -14.86 -15.14 -11.85 -11.9 D06V2 EMT
2022/6/08 23:49 161 5.54% -3.9 - -3.22 -12.33 -9.38 -6.9 D06V2 EMT
2022/6/09 0:37 644 6.70% ◦ -9.93 4.38 -8.47 -7.96 -14.96 -9.4 D02V1 PMT
2022/6/09 4:26 1249 24.57% ◦ -9.53 4.37 -8.02 -7.83 -13.76 0.6 D02V1 PMT
2022/6/10 15:15 61 3.30% -2.88 - -15.25 -14.91 -9.11 -9.4 D06V1 PMT
2022/6/10 21:44 42 1.18% 2.04 - -6.65 -14.91 -11.85 8.1 D06V2 EMT
2022/6/13 8:47 69 1.25% -7.48 4.39 -15.7 -16.41 -13.35 -11.9 D06V2 EMT
2022/6/14 12:44 130 4.12% -2.46 - -11.02 -19.93 -16.87 -9.4 D06V2 EMT
2022/6/14 14:34 1056 9.03% ◦ -8.2 4.37 -7.2 -6.88 -13.64 0.6 D02V1 PMT
2022/6/16 2:01 108 2.61% -11.54 - -25.3 -25.46 1.43 -9.4 D06V2 EMT
2022/6/16 22:18 70 3.08% 9.95 - -15.22 -16.53 -12.65 -9.4 BOR HOR
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Date
Diamond BCM QCS Sensor timing (Δ𝑇, 𝜇𝑠) Fastest
does(mrad) loss(%) quench BCM D06H3 D6V1 D06V2 D02V1 Diamond Sensor

2022/6/18 20:32 198 19.76% -1.24 - -9.02 -8.76 -5.62 -6.9 D06V1 PMT

2022/6/20-6/22

2022/6/20 11:28 195 6.15% -2.46 4.4 -10.55 -10.66 -7.38 3.1 D06V2 EMT
2022/6/22 8:39 306 7.97% -5.87 4.39 -13.68 -74.32 -10.86 -9.4 D06V2 EMT



139

B
EMT amplitude and Efficiency



140 Chapter B. EMT amplitude and Efficiency

Define secondary emission efficiency for each dynodes as 𝛿𝑖 , where i is the number
of layers. 𝛿𝑖 should be different for different layers since it depends on the particle
energy. And Δ for the second secondary emission efficiency for the aluminum cathode.
We could write the gain of EMT as:

𝐺 = Δ · 𝛿0 · 𝛿1 · ... · 𝛿𝑛 = Δ
𝑛∏
𝑖=1

𝛿𝑖 ; (B.1)

And the amplitude of signal can be write as:

𝑄 = 𝑒 · 𝜙𝑒{𝐴𝑠𝑢𝑟 · Δ ·
𝑛∏
𝑖=1

𝛿𝑖 +
𝑛−1∑︁
𝑖=1

; (𝐴𝑖 · 𝛿𝑖 ·
𝑛∏

𝑗=𝑖+1
𝛿𝑖)} (B.2)

where 𝐴𝑠𝑢𝑟 and 𝐴𝑖 is the area of surface for aluminum cathode and each dynodes. 𝜙𝑒 for
is the electron flux [cm2]. First term is from secondary emission at aluminum cathode
and second from each dynodes.

We have made a beam test with KEK Accelerate Ring Test Beamline to evaluated
the detect efficiency of the EMTs and the result as[55] : 𝑃 = 0.3% Where P define as :

𝑃 =
#𝑠𝑖𝑔𝑛𝑎𝑙

#𝐼𝑛𝑝𝑢𝑡 𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑛 × Δ ×𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒 (B.3)
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