Search for Dark Higgsstrahlung in $e^+e^- \to \mu^+\mu^-$ and missing energy final states with the Belle II experiment The Belle II Collaboration ## Abstract This note contains the approved plots associated with the Dark Higgstrahlung analysis work presented in BELLE2-NOTE-PH-2020-048. FIG. 1: Total background distribution inside mass windows after the preselections, normalized to an integrated luminosity of 9 fb^{-1} . Smoothed version. FIG. 2: Signal efficiency distribution inside mass windows after the preselections. Smoothed version. FIG. 3: Distribution of the final background suppression variable E_x . E_x is the absolute value of the asymmetry computed along the line described by the distribution $E_{\mu 1}^{CMS}$ vs $E_{\mu 0}^{CMS}$ in a mass window. Here $M_{A'}=3.5\,GeV/c^2$, $M_{h'}=4.0\,GeV/c^2$. The background here is dominated by the $\tau\tau(\gamma)$ contribution. FIG. 4: Distribution of the final background suppression variable E_x . E_x is the absolute value of the asymmetry computed along the line described by the distribution $E_{\mu 1}^{CMS}$ vs $E_{\mu 0}^{CMS}$ in a mass window. Here $M_{A'} = 9.0 \, GeV/c^2$, $M_{h'} = 1.0 \, GeV/c^2$. FIG. 5: Total background distribution inside mass windows after the final background suppression (E_x selection), normalized to an integrated luminosity of 9 fb⁻¹. Smoothed version. FIG. 6: Signal efficiency distribution inside mass windows after the final background suppression (E_x selection). Selection optimized for an integrated luminosity of 9 fb⁻¹. Smoothed version. FIG. 7: Smoothed expected sensitivities on cross-section after the final background suppression (E_x selection) estimated with a Bayesian counting technique. Preliminary conservative systematics considered. FIG. 8: Smoothed expected sensitivities in $\epsilon^2 \alpha_D$ after the final background suppression (E_x selection) estimated with a Bayesian counting technique. Preliminary conservative systematics considered. Contour lines corresponding to $\epsilon^2 \alpha_D$ values of 10^{-7} , 5×10^{-7} , 10^{-6} and 10^{-5} are shown. FIG. 9: Smoothed expected sensitivities in ϵ^2 for the arbitrary choice $\alpha_D = 0.1$ after the final background suppression (E_x selection) estimated with a Bayesian approach. Preliminary conservative systematics considered.